IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33104-3.html
   My bibliography  Save this article

Water regulates the residence time of Benzamidine in Trypsin

Author

Listed:
  • Narjes Ansari

    (Italian Institute of Technology)

  • Valerio Rizzi

    (Italian Institute of Technology)

  • Michele Parrinello

    (Italian Institute of Technology)

Abstract

The process of ligand-protein unbinding is crucial in biophysics. Water is an essential part of any biological system and yet, many aspects of its role remain elusive. Here, we simulate with state-of-the-art enhanced sampling techniques the binding of Benzamidine to Trypsin which is a much studied and paradigmatic ligand-protein system. We use machine learning methods to determine efficient collective coordinates for the complex non-local network of water. These coordinates are used to perform On-the-fly Probability Enhanced Sampling simulations, which we adapt to calculate also the ligand residence time. Our results, both static and dynamic, are in good agreement with experiments. We find that the presence of a water molecule located at the bottom of the binding pocket allows via a network of hydrogen bonds the ligand to be released into the solution. On a finer scale, even when unbinding is allowed, another water molecule further modulates the exit time.

Suggested Citation

  • Narjes Ansari & Valerio Rizzi & Michele Parrinello, 2022. "Water regulates the residence time of Benzamidine in Trypsin," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33104-3
    DOI: 10.1038/s41467-022-33104-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33104-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33104-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nuria Plattner & Frank Noé, 2015. "Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Steffen Wolf & Benjamin Lickert & Simon Bray & Gerhard Stock, 2020. "Multisecond ligand dissociation dynamics from atomistic simulations," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Valerio Rizzi & Luigi Bonati & Narjes Ansari & Michele Parrinello, 2021. "The role of water in host-guest interaction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Johannes Schiebel & Roberto Gaspari & Tobias Wulsdorf & Khang Ngo & Christian Sohn & Tobias E. Schrader & Andrea Cavalli & Andreas Ostermann & Andreas Heine & Gerhard Klebe, 2018. "Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meiying Cui & Dzung Nguyen & Michelle Patino Gaillez & Stephan Heiden & Weilin Lin & Michael Thompson & Francesco V. Reddavide & Qinchang Chen & Yixin Zhang, 2023. "Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jody Pacalon & Guillaume Audic & Justine Magnat & Manon Philip & Jérôme Golebiowski & Christophe J. Moreau & Jérémie Topin, 2023. "Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    4. Kalyan S. Chakrabarti & Simon Olsson & Supriya Pratihar & Karin Giller & Kerstin Overkamp & Ko On Lee & Vytautas Gapsys & Kyoung-Seok Ryu & Bert L. Groot & Frank Noé & Stefan Becker & Donghan Lee & Th, 2022. "A litmus test for classifying recognition mechanisms of transiently binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Polydefkis Diamantis & Oliver T Unke & Markus Meuwly, 2017. "Migration of small ligands in globins: Xe diffusion in truncated hemoglobin N," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33104-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.