IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32148-9.html
   My bibliography  Save this article

Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models

Author

Listed:
  • Jianbang Wang

    (The Hebrew University of Jerusalem)

  • Zhenzhen Li

    (The Hebrew University of Jerusalem)

  • Itamar Willner

    (The Hebrew University of Jerusalem)

Abstract

Dynamic, transient, out-of-equilibrium networks guide cellular genetic, metabolic or signaling processes. Designing synthetic networks emulating natural processes imposes important challenges including the ordered connectivity of transient reaction modules, engineering of the appropriate balance between production and depletion of reaction constituents, and coupling of the reaction modules with emerging chemical functions dictated by the networks. Here we introduce the assembly of three coupled reaction modules executing a cascaded dynamic process leading to the transient formation and depletion of three different Mg2+-ion-dependent DNAzymes. The transient operation of the DNAzyme in one layer triggers the dynamic activation of the DNAzyme in the subsequent layer, leading to a three-layer transient catalytic cascade. The kinetics of the transient cascade is computationally simulated. The cascaded network is coupled to a polymerization/nicking DNA machinery guiding transient synthesis of three coded strands acting as “gene models”, and to the rolling circle polymerization machinery leading to the transient synthesis of fluorescent Zn(II)-PPIX/G-quadruplex chains or hemin/G-quadruplex catalytic wires.

Suggested Citation

  • Jianbang Wang & Zhenzhen Li & Itamar Willner, 2022. "Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32148-9
    DOI: 10.1038/s41467-022-32148-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32148-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32148-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin Montagne & Guillaume Gines & Teruo Fujii & Yannick Rondelez, 2016. "Boosting functionality of synthetic DNA circuits with tailored deactivation," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    2. Fei Wang & Hui Lv & Qian Li & Jiang Li & Xueli Zhang & Jiye Shi & Lihua Wang & Chunhai Fan, 2020. "Implementing digital computing with DNA-based switching circuits," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Liang Yue & Shan Wang & Verena Wulf & Itamar Willner, 2019. "Stiffness-switchable DNA-based constitutional dynamic network hydrogels for self-healing and matrix-guided controlled chemical processes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Vassilis G. Gorgoulis & Leandros-Vassilios F. Vassiliou & Panagiotis Karakaidos & Panayotis Zacharatos & Athanassios Kotsinas & Triantafillos Liloglou & Monica Venere & Richard A. DiTullio & Nikolaos , 2005. "Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions," Nature, Nature, vol. 434(7035), pages 907-913, April.
    5. Jirina Bartkova & Nousin Rezaei & Michalis Liontos & Panagiotis Karakaidos & Dimitris Kletsas & Natalia Issaeva & Leandros-Vassilios F. Vassiliou & Evangelos Kolettas & Katerina Niforou & Vassilis C. , 2006. "Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints," Nature, Nature, vol. 444(7119), pages 633-637, November.
    6. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    7. Lulu Qian & Erik Winfree & Jehoshua Bruck, 2011. "Neural network computation with DNA strand displacement cascades," Nature, Nature, vol. 475(7356), pages 368-372, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tai-Yin Chiu & Hui-Ju K Chiang & Ruei-Yang Huang & Jie-Hong R Jiang & François Fages, 2015. "Synthesizing Configurable Biochemical Implementation of Linear Systems from Their Transfer Function Specifications," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-27, September.
    2. Kanakov, Oleg & Chen, Shangbin & Zaikin, Alexey, 2024. "Learning by selective plasmid loss for intracellular synthetic classifiers," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Luna Rizik & Loai Danial & Mouna Habib & Ron Weiss & Ramez Daniel, 2022. "Synthetic neuromorphic computing in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    5. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    6. Devashish Dwivedi & Daniela Harry & Patrick Meraldi, 2023. "Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Avik Samanta & Maximilian Hörner & Wei Liu & Wilfried Weber & Andreas Walther, 2022. "Signal-processing and adaptive prototissue formation in metabolic DNA protocells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    10. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Margherita Carletti & Malay Banerjee, 2019. "A Backward Technique for Demographic Noise in Biological Ordinary Differential Equation Models," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
    12. Siddharth Agarwal & Dino Osmanovic & Mahdi Dizani & Melissa A. Klocke & Elisa Franco, 2024. "Dynamic control of DNA condensation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Konstantinos I Papadimitriou & Guy-Bart V Stan & Emmanuel M Drakakis, 2013. "Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-24, February.
    14. Inés P Mariño & Alexey Zaikin & Joaquín Míguez, 2017. "A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-25, August.
    15. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    16. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    17. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    18. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    19. Cheng, Guifang & Liu, Hao, 2024. "Asynchronous finite-time extended dissipative sliding mode control for semi-Markovian jump master–slave neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    20. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32148-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.