IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31970-5.html
   My bibliography  Save this article

Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts

Author

Listed:
  • Kangqiang Qiu

    (University of Cincinnati College of Medicine)

  • Weiwei Zou

    (Cincinnati Children’s Hospital Medical Center)

  • Hongbao Fang

    (University of Cincinnati College of Medicine)

  • Mingang Hao

    (University of Cincinnati College of Medicine)

  • Kritika Mehta

    (University of Illinois at Urbana-Champaign)

  • Zhiqi Tian

    (University of Cincinnati College of Medicine)

  • Jun-Lin Guan

    (University of Cincinnati College of Medicine)

  • Kai Zhang

    (University of Illinois at Urbana-Champaign)

  • Taosheng Huang

    (Cincinnati Children’s Hospital Medical Center
    University at Buffalo)

  • Jiajie Diao

    (University of Cincinnati College of Medicine)

Abstract

Mitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria–lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers. Real-time optogenetic induction of mitochondrial fission is tracked in living cells to measure the fission rate. The optogenetic method partially restores the mitochondrial functions of SLC25A46−/− cells, which display defects in mitochondrial fission and hyperfused mitochondria. The optogenetic MLCs system thus provides a platform for studying mitochondrial fission and treating mitochondrial diseases.

Suggested Citation

  • Kangqiang Qiu & Weiwei Zou & Hongbao Fang & Mingang Hao & Kritika Mehta & Zhiqi Tian & Jun-Lin Guan & Kai Zhang & Taosheng Huang & Jiajie Diao, 2022. "Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31970-5
    DOI: 10.1038/s41467-022-31970-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31970-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31970-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nina A. Bonekamp & Bradley Peter & Hauke S. Hillen & Andrea Felser & Tim Bergbrede & Axel Choidas & Moritz Horn & Anke Unger & Raffaella Lucrezia & Ilian Atanassov & Xinping Li & Uwe Koch & Sascha Men, 2020. "Small-molecule inhibitors of human mitochondrial DNA transcription," Nature, Nature, vol. 588(7839), pages 712-716, December.
    2. Maxime Boutry & Peter K. Kim, 2021. "ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Jonathan R. Friedman & Jodi Nunnari, 2014. "Mitochondrial form and function," Nature, Nature, vol. 505(7483), pages 335-343, January.
    4. Yvette C. Wong & Daniel Ysselstein & Dimitri Krainc, 2018. "Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis," Nature, Nature, vol. 554(7692), pages 382-386, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane T. Killarney & Rachel Washart & Ryan S. Soderquist & Jacob P. Hoj & Jamie Lebhar & Kevin H. Lin & Kris C. Wood, 2023. "Executioner caspases restrict mitochondrial RNA-driven Type I IFN induction during chemotherapy-induced apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Donghua Hu & Min Tan & Dongliang Lu & Brian Kleiboeker & Xuejing Liu & Hongsuk Park & Alexxai V. Kravitz & Kooresh I. Shoghi & Yu-Hua Tseng & Babak Razani & Akihiro Ikeda & Irfan J. Lodhi, 2023. "TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and energy homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Zoë P. Van Acker & Anika Perdok & Ruben Hellemans & Katherine North & Inge Vorsters & Cedric Cappel & Jonas Dehairs & Johannes V. Swinnen & Ragna Sannerud & Marine Bretou & Markus Damme & Wim Annaert, 2023. "Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Yan Zou & Yajing Sun & Yibin Wang & Dongya Zhang & Huiqing Yang & Xin Wang & Meng Zheng & Bingyang Shi, 2023. "Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Sarah Rösing & Fabian Ullrich & Susann Meisterfeld & Franziska Schmidt & Laura Mlitzko & Marijana Croon & Ryan G Nattrass & Nadia Eberl & Julia Mahlberg & Martin Schlee & Anja Wieland & Philipp Simon , 2024. "Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Ryouhei Tsutsumi & Beatrix Ueberheide & Feng-Xia Liang & Benjamin G. Neel & Ryuichi Sakai & Yoshiro Saito, 2024. "Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Joana Sá-Pessoa & Sara López-Montesino & Kornelia Przybyszewska & Isabel Rodríguez-Escudero & Helina Marshall & Adelia Ova & Gunnar N. Schroeder & Peter Barabas & María Molina & Tim Curtis & Víctor J., 2023. "A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Scharf, Yael, 2017. "A chaotic outlook on biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 42-47.
    9. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Flavia Giamogante & Lucia Barazzuol & Francesca Maiorca & Elena Poggio & Alessandra Esposito & Anna Masato & Gennaro Napolitano & Alessio Vagnoni & Tito Calì & Marisa Brini, 2024. "A SPLICS reporter reveals $${{{{{\boldsymbol{\alpha }}}}}}$$ α -synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Naijun Miao & Zhuning Wang & Qinlan Wang & Hongyan Xie & Ninghao Yang & Yanzhe Wang & Jin Wang & Haixia Kang & Wenjuan Bai & Yuanyuan Wang & Rui He & Kepeng Yan & Yang Wang & Qiongyi Hu & Zhaoyuan Liu, 2023. "Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Sun Woo Sophie Kang & Rory P. Cunningham & Colin B. Miller & Lauryn A. Brown & Constance M. Cultraro & Adam Harned & Kedar Narayan & Jonathan Hernandez & Lisa M. Jenkins & Alexei Lobanov & Maggie Cam , 2024. "A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Gong-Her Wu & Charlene Smith-Geater & Jesús G. Galaz-Montoya & Yingli Gu & Sanket R. Gupte & Ranen Aviner & Patrick G. Mitchell & Joy Hsu & Ricardo Miramontes & Keona Q. Wang & Nicolette R. Geller & C, 2023. "CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Claudio Bussi & Tiaan Heunis & Enrica Pellegrino & Elliott M. Bernard & Nourdine Bah & Mariana Silva Santos & Pierre Santucci & Beren Aylan & Angela Rodgers & Antony Fearns & Julia Mitschke & Christop, 2022. "Lysosomal damage drives mitochondrial proteome remodelling and reprograms macrophage immunometabolism," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    16. George K. E. Umanah & Leire Abalde-Atristain & Mohammed Repon Khan & Jaba Mitra & Mohamad Aasif Dar & Melissa Chang & Kavya Tangella & Amy McNamara & Samuel Bennett & Rong Chen & Vasudha Aggarwal & Ma, 2022. "AAA + ATPase Thorase inhibits mTOR signaling through the disassembly of the mTOR complex 1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Yanan Li & Yonghua Wu & Ru Xu & Jialing Guo & Fenglei Quan & Yongyuan Zhang & Di Huang & Yiran Pei & Hua Gao & Wei Liu & Junjie Liu & Zhenzhong Zhang & Ruijie Deng & Jinjin Shi & Kaixiang Zhang, 2023. "In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Michael Webb & Jyoti Malhotra & Chui-Se Tham & Matthew Goddeeris & Douglas W McMillin & Effie Tozzo, 2017. "A Novel Mitophagy Assay for Skeletal Myotubes," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 4(4), pages 79-86, July.
    19. Mathieu Ouellet & Gérald Guillebaud & Valerie Gervais & David Lupien St-Pierre & Marc Germain, 2017. "A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-23, June.
    20. Yujie Zhu & Mingchao Zhang & Weiran Wang & Shuang Qu & Minghui Liu & Weiwei Rong & Wenwen Yang & Hongwei Liang & Caihong Zeng & Xiaodong Zhu & Limin Li & Zhihong Liu & Ke Zen, 2023. "Polynucleotide phosphorylase protects against renal tubular injury via blocking mt-dsRNA-PKR-eIF2α axis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31970-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.