IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31963-4.html
   My bibliography  Save this article

Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer

Author

Listed:
  • Caterina Bartolacci

    (University of Cincinnati College of Medicine)

  • Cristina Andreani

    (University of Cincinnati College of Medicine)

  • Gonçalo Vale

    (The University of Texas Southwestern Medical Center)

  • Stefano Berto

    (The University of Texas Southwestern Medical Center)

  • Margherita Melegari

    (University of Cincinnati College of Medicine)

  • Anna Colleen Crouch

    (The University of Texas MD Anderson Cancer Center)

  • Dodge L. Baluya

    (Washington State University)

  • George Kemble

    (Sagimet Biosciences)

  • Kurt Hodges

    (University of Cincinnati College of Medicine)

  • Jacqueline Starrett

    (Yale School of Medicine)

  • Katerina Politi

    (Yale School of Medicine)

  • Sandra L. Starnes

    (University of Cincinnati College of Medicine)

  • Daniele Lorenzini

    (Fondazione IRCCS Istituto Nazionale dei Tumori di Milano)

  • Maria Gabriela Raso

    (The University of Texas MD Anderson Cancer Center)

  • Luisa M. Solis Soto

    (The University of Texas MD Anderson Cancer Center)

  • Carmen Behrens

    (The University of Texas MD Anderson Cancer Center)

  • Humam Kadara

    (The University of Texas MD Anderson Cancer Center)

  • Boning Gao

    (The University of Texas Southwestern Medical Center)

  • Ignacio I. Wistuba

    (The University of Texas MD Anderson Cancer Center)

  • John D. Minna

    (The University of Texas Southwestern Medical Center)

  • Jeffrey G. McDonald

    (The University of Texas Southwestern Medical Center)

  • Pier Paolo Scaglioni

    (University of Cincinnati College of Medicine)

Abstract

Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.

Suggested Citation

  • Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31963-4
    DOI: 10.1038/s41467-022-31963-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31963-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31963-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jessalyn M. Ubellacker & Alpaslan Tasdogan & Vijayashree Ramesh & Bo Shen & Evann C. Mitchell & Misty S. Martin-Sandoval & Zhimin Gu & Michael L. McCormick & Alison B. Durham & Douglas R. Spitz & Zhiy, 2020. "Lymph protects metastasizing melanoma cells from ferroptosis," Nature, Nature, vol. 585(7823), pages 113-118, September.
    2. Vasanthi S. Viswanathan & Matthew J. Ryan & Harshil D. Dhruv & Shubhroz Gill & Ossia M. Eichhoff & Brinton Seashore-Ludlow & Samuel D. Kaffenberger & John K. Eaton & Kenichi Shimada & Andrew J. Aguirr, 2017. "Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway," Nature, Nature, vol. 547(7664), pages 453-457, July.
    3. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    4. Nicholas Yagoda & Moritz von Rechenberg & Elma Zaganjor & Andras J. Bauer & Wan Seok Yang & Daniel J. Fridman & Adam J. Wolpaw & Inese Smukste & John M. Peltier & J. Jay Boniface & Richard Smith & Ste, 2007. "RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels," Nature, Nature, vol. 447(7146), pages 865-869, June.
    5. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    6. Jude Canon & Karen Rex & Anne Y. Saiki & Christopher Mohr & Keegan Cooke & Dhanashri Bagal & Kevin Gaida & Tyler Holt & Charles G. Knutson & Neelima Koppada & Brian A. Lanman & Jonathan Werner & Aaron, 2019. "The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity," Nature, Nature, vol. 575(7781), pages 217-223, November.
    7. Minzhe Guo & Yina Du & Jason J. Gokey & Samriddha Ray & Sheila M. Bell & Mike Adam & Parvathi Sudha & Anne Karina Perl & Hitesh Deshmukh & S. Steven Potter & Jeffrey A. Whitsett & Yan Xu, 2019. "Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Sayantani Ghosh Dastidar & Bony Kumar & Bo Lauckner & Damien Parrello & Danielle Perley & Maria Vlasenok & Antariksh Tyagi & Nii Koney-Kwaku Koney & Ata Abbas & Sergei Nechaev, 2023. "Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Mingming Wu & Xiao Zhang & Weijie Zhang & Yi Shiou Chiou & Wenchang Qian & Xiangtian Liu & Min Zhang & Hong Yan & Shilan Li & Tao Li & Xinghua Han & Pengxu Qian & Suling Liu & Yueyin Pan & Peter E. Lo, 2022. "Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Philip East & Gavin P. Kelly & Dhruva Biswas & Michela Marani & David C. Hancock & Todd Creasy & Kris Sachsenmeier & Charles Swanton & Julian Downward & Sophie de Carné Trécesson, 2022. "RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Bingzhen Chen & Wenjuan Zhai & Lingchen Kong, 2022. "Variable selection and collinearity processing for multivariate data via row-elastic-net regularization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 79-96, March.
    14. Hao Wang & R. Alejandro Sica & Gurbakhash Kaur & Phillip M. Galbo & Zhixin Jing & Christopher D. Nishimura & Xiaoxin Ren & Ankit Tanwar & Bijan Etemad-Gilbertson & Britta Will & Deyou Zheng & David Fo, 2024. "TMIGD2 is an orchestrator and therapeutic target on human acute myeloid leukemia stem cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Ozge Saatci & Metin Cetin & Meral Uner & Unal Metin Tokat & Ioulia Chatzistamou & Pelin Gulizar Ersan & Elodie Montaudon & Aytekin Akyol & Sercan Aksoy & Aysegul Uner & Elisabetta Marangoni & Mathew S, 2023. "Toxic PARP trapping upon cAMP-induced DNA damage reinstates the efficacy of endocrine therapy and CDK4/6 inhibitors in treatment-refractory ER+ breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Julia Joung & Paul C. Kirchgatterer & Ankita Singh & Jang H. Cho & Suchita P. Nety & Rebecca C. Larson & Rhiannon K. Macrae & Rebecca Deasy & Yuen-Yi Tseng & Marcela V. Maus & Feng Zhang, 2022. "CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Ming Tang & Hussein A. Abbas & Marcelo V. Negrao & Maheshwari Ramineni & Xin Hu & Shawna Marie Hubert & Junya Fujimoto & Alexandre Reuben & Susan Varghese & Jianhua Zhang & Jun Li & Chi-Wan Chow & Xiz, 2021. "The histologic phenotype of lung cancers is associated with transcriptomic features rather than genomic characteristics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    19. Kosuke Yamaguchi & Xiaoying Chen & Brianna Rodgers & Fumihito Miura & Pavel Bashtrykov & Frédéric Bonhomme & Catalina Salinas-Luypaert & Deis Haxholli & Nicole Gutekunst & Bihter Özdemir Aygenli & Lau, 2024. "Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31963-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.