IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31875-3.html
   My bibliography  Save this article

Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure

Author

Listed:
  • Bo Yu

    (Tsinghua University)

  • Pan Li

    (Tsinghua University
    Tsinghua University)

  • Qiangfeng Cliff Zhang

    (Tsinghua University
    Tsinghua University)

  • Lin Hou

    (Tsinghua University
    Tsinghua University)

Abstract

RNAs perform their function by forming specific structures, which can change across cellular conditions. Structure probing experiments combined with next generation sequencing technology have enabled transcriptome-wide analysis of RNA secondary structure in various cellular conditions. Differential analysis of structure probing data in different conditions can reveal the RNA structurally variable regions (SVRs), which is important for understanding RNA functions. Here, we propose DiffScan, a computational framework for normalization and differential analysis of structure probing data in high resolution. DiffScan preprocesses structure probing datasets to remove systematic bias, and then scans the transcripts to identify SVRs and adaptively determines their lengths and locations. The proposed approach is compatible with most structure probing platforms (e.g., icSHAPE, DMS-seq). When evaluated with simulated and benchmark datasets, DiffScan identifies structurally variable regions at nucleotide resolution, with substantial improvement in accuracy compared with existing SVR detection methods. Moreover, the improvement is robust when tested in multiple structure probing platforms. Application of DiffScan in a dataset of multi-subcellular RNA structurome and a subsequent motif enrichment analysis suggest potential links of RNA structural variation and mRNA abundance, possibly mediated by RNA binding proteins such as the serine/arginine rich splicing factors. This work provides an effective tool for differential analysis of RNA secondary structure, reinforcing the power of structure probing experiments in deciphering the dynamic RNA structurome.

Suggested Citation

  • Bo Yu & Pan Li & Qiangfeng Cliff Zhang & Lin Hou, 2022. "Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31875-3
    DOI: 10.1038/s41467-022-31875-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31875-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31875-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yue Wan & Kun Qu & Qiangfeng Cliff Zhang & Ryan A. Flynn & Ohad Manor & Zhengqing Ouyang & Jiajing Zhang & Robert C. Spitale & Michael P. Snyder & Eran Segal & Howard Y. Chang, 2014. "Landscape and variation of RNA secondary structure across the human transcriptome," Nature, Nature, vol. 505(7485), pages 706-709, January.
    2. Hua Li & Sharon Aviran, 2018. "Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Robert C. Spitale & Ryan A. Flynn & Qiangfeng Cliff Zhang & Pete Crisalli & Byron Lee & Jong-Wha Jung & Hannes Y. Kuchelmeister & Pedro J. Batista & Eduardo A. Torre & Eric T. Kool & Howard Y. Chang, 2015. "Structural imprints in vivo decode RNA regulatory mechanisms," Nature, Nature, vol. 519(7544), pages 486-490, March.
    4. Sidika Tapsin & Miao Sun & Yang Shen & Huibin Zhang & Xin Ni Lim & Teodorus Theo Susanto & Siwy Ling Yang & Gui Sheng Zeng & Jasmine Lee & Alexander Lezhava & Ee Lui Ang & Lian Hui Zhang & Yue Wang & , 2018. "Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Robert C. Spitale & Ryan A. Flynn & Qiangfeng Cliff Zhang & Pete Crisalli & Byron Lee & Jong-Wha Jung & Hannes Y. Kuchelmeister & Pedro J. Batista & Eduardo A. Torre & Eric T. Kool & Howard Y. Chang, 2015. "Erratum: Structural imprints in vivo decode RNA regulatory mechanisms," Nature, Nature, vol. 527(7577), pages 264-264, November.
    6. Hua Li & Sharon Aviran, 2018. "Publisher Correction: Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    7. Silvi Rouskin & Meghan Zubradt & Stefan Washietl & Manolis Kellis & Jonathan S. Weissman, 2014. "Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo," Nature, Nature, vol. 505(7485), pages 701-705, January.
    8. Noemi Fernandez & Ross A. Cordiner & Robert S. Young & Nele Hug & Sara Macias & Javier F. Cáceres, 2017. "Genetic variation and RNA structure regulate microRNA biogenesis," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gongwang Yu & Yao Liu & Zizhang Li & Shuyun Deng & Zhuoxing Wu & Xiaoyu Zhang & Wenbo Chen & Junnan Yang & Xiaoshu Chen & Jian-Rong Yang, 2023. "Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Ryan Damme & Kongpan Li & Minjie Zhang & Jianhui Bai & Wilson H. Lee & Joseph D. Yesselman & Zhipeng Lu & Willem A. Velema, 2022. "Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Tammy C. T. Lan & Matty F. Allan & Lauren E. Malsick & Jia Z. Woo & Chi Zhu & Fengrui Zhang & Stuti Khandwala & Sherry S. Y. Nyeo & Yu Sun & Junjie U. Guo & Mark Bathe & Anders Näär & Anthony Griffith, 2022. "Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Haoran Zhu & Yuning Yang & Yunhe Wang & Fuzhou Wang & Yujian Huang & Yi Chang & Ka-chun Wong & Xiangtao Li, 2023. "Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Sepideh Tavakoli & Mohammad Nabizadeh & Amr Makhamreh & Howard Gamper & Caroline A. McCormick & Neda K. Rezapour & Ya-Ming Hou & Meni Wanunu & Sara H. Rouhanifard, 2023. "Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Ainara González-Iglesias & Aida Arcas & Ana Domingo-Muelas & Estefania Mancini & Joan Galcerán & Juan Valcárcel & Isabel Fariñas & M. Angela Nieto, 2024. "Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Shurong Liu & Junhong Huang & Jie Zhou & Siyan Chen & Wujian Zheng & Chang Liu & Qiao Lin & Ping Zhang & Di Wu & Simeng He & Jiayi Ye & Shun Liu & Keren Zhou & Bin Li & Lianghu Qu & Jianhua Yang, 2024. "NAP-seq reveals multiple classes of structured noncoding RNAs with regulatory functions," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Harshita Sharma & Matthew N. Z. Valentine & Naoko Toki & Hiromi Nishiyori Sueki & Stefano Gustincich & Hazuki Takahashi & Piero Carninci, 2024. "Decryption of sequence, structure, and functional features of SINE repeat elements in SINEUP non-coding RNA-mediated post-transcriptional gene regulation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Anneke Brümmer & Sven Bergmann, 2024. "Disentangling genetic effects on transcriptional and post-transcriptional gene regulation through integrating exon and intron expression QTLs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Bin Shao & Jiawei Yan & Jing Zhang & Lili Liu & Ye Chen & Allen R. Buskirk, 2024. "Riboformer: a deep learning framework for predicting context-dependent translation dynamics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Elzbieta Kierzek & Xiaoju Zhang & Richard M. Watson & Scott D. Kennedy & Marta Szabat & Ryszard Kierzek & David H. Mathews, 2022. "Secondary structure prediction for RNA sequences including N6-methyladenosine," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Simone Fiori & Andrea Vitali, 2019. "Statistical Modeling of Trivariate Static Systems: Isotonic Models," Data, MDPI, vol. 4(1), pages 1-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31875-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.