IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31391-4.html
   My bibliography  Save this article

Vibrio cholerae O139 genomes provide a clue to why it may have failed to usher in the eighth cholera pandemic

Author

Listed:
  • Thandavarayan Ramamurthy

    (National Institute of Cholera and Enteric Diseases (NICED))

  • Agila Kumari Pragasam

    (Christian Medical College)

  • Alyce Taylor-Brown

    (Wellcome Genome Campus)

  • Robert C. Will

    (University of Cambridge)

  • Karthick Vasudevan

    (Christian Medical College
    REVA University)

  • Bhabatosh Das

    (Translational Health Science and Technology Institute)

  • Sunil Kumar Srivastava

    (University of Delhi)

  • Goutam Chowdhury

    (National Institute of Cholera and Enteric Diseases (NICED))

  • Asish K. Mukhopadhyay

    (National Institute of Cholera and Enteric Diseases (NICED))

  • Shanta Dutta

    (National Institute of Cholera and Enteric Diseases (NICED))

  • Balaji Veeraraghavan

    (Christian Medical College)

  • Nicholas R. Thomson

    (Wellcome Genome Campus
    London School of Hygiene and Tropical Medicine)

  • Naresh C. Sharma

    (Maharishi Valmiki Infectious Diseases Hospital)

  • Gopinath Balakrish Nair

    (Rajiv Gandhi Centre for Biotechnology)

  • Yoshifumi Takeda

    (National Institute of Infectious Diseases)

  • Amit Ghosh

    (National Institute of Cholera and Enteric Diseases (NICED))

  • Gordon Dougan

    (University of Cambridge)

  • Ankur Mutreja

    (University of Cambridge
    Translational Health Science and Technology Institute)

Abstract

Cholera is a life-threatening infectious disease that remains an important public health issue in several low and middle-income countries. In 1992, a newly identified O139 Vibrio cholerae temporarily displaced the O1 serogroup. No study has been able to answer why the potential eighth cholera pandemic (8CP) causing V. cholerae O139 emerged so successfully and then died out. We conducted a genomic study, including 330 O139 isolates, covering emergence of the serogroup in 1992 through to 2015. We noted two key genomic evolutionary changes that may have been responsible for the disappearance of genetically distinct but temporally overlapping waves (A-C) of O139. Firstly, as the waves progressed, a switch from a homogenous toxin genotype in wave-A to heterogeneous genotypes. Secondly, a gradual loss of antimicrobial resistance (AMR) with the progression of waves. We hypothesize that these two changes contributed to the eventual epidemiological decline of O139.

Suggested Citation

  • Thandavarayan Ramamurthy & Agila Kumari Pragasam & Alyce Taylor-Brown & Robert C. Will & Karthick Vasudevan & Bhabatosh Das & Sunil Kumar Srivastava & Goutam Chowdhury & Asish K. Mukhopadhyay & Shanta, 2022. "Vibrio cholerae O139 genomes provide a clue to why it may have failed to usher in the eighth cholera pandemic," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31391-4
    DOI: 10.1038/s41467-022-31391-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31391-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31391-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ankur Mutreja & Dong Wook Kim & Nicholas R. Thomson & Thomas R. Connor & Je Hee Lee & Samuel Kariuki & Nicholas J. Croucher & Seon Young Choi & Simon R. Harris & Michael Lebens & Swapan Kumar Niyogi &, 2011. "Evidence for several waves of global transmission in the seventh cholera pandemic," Nature, Nature, vol. 477(7365), pages 462-465, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Mamun Monir & Mohammad Tarequl Islam & Razib Mazumder & Dinesh Mondal & Kazi Sumaita Nahar & Marzia Sultana & Masatomo Morita & Makoto Ohnishi & Anwar Huq & Haruo Watanabe & Firdausi Qadri & Mustaf, 2023. "Genomic attributes of Vibrio cholerae O1 responsible for 2022 massive cholera outbreak in Bangladesh," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Tomomichi Ogata & Marie-Fanny Racault & Masami Nonaka & Swadhin Behera, 2021. "Climate Precursors of Satellite Water Marker Index for Spring Cholera Outbreak in Northern Bay of Bengal Coastal Regions," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    3. Caitlin S Pepperell & Amanda M Casto & Andrew Kitchen & Julie M Granka & Omar E Cornejo & Eddie C Holmes & Bruce Birren & James Galagan & Marcus W Feldman, 2013. "The Role of Selection in Shaping Diversity of Natural M. tuberculosis Populations," PLOS Pathogens, Public Library of Science, vol. 9(8), pages 1-14, August.
    4. Sadie J. Ryan & Anna M. Stewart-Ibarra & Eunice Ordóñez-Enireb & Winnie Chu & Julia L. Finkelstein & Christine A. King & Luis E. Escobar & Christina Lupone & Froilan Heras & Erica Tauzer & Egan Waggon, 2018. "Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
    5. Alyce Taylor-Brown & Mokibul Hassan Afrad & Ashraful Islam Khan & Florent Lassalle & Md. Taufiqul Islam & Nabid Anjum Tanvir & Nicholas R. Thomson & Firdausi Qadri, 2023. "Genomic epidemiology of Vibrio cholerae during a mass vaccination campaign of displaced communities in Bangladesh," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31391-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.