IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31161-2.html
   My bibliography  Save this article

Trapping and detecting nanoplastics by MXene-derived oxide microrobots

Author

Listed:
  • Mario Urso

    (Brno University of Technology)

  • Martina Ussia

    (Brno University of Technology)

  • Filip Novotný

    (Brno University of Technology
    University of Chemistry and Technology Prague)

  • Martin Pumera

    (Brno University of Technology
    University of Chemistry and Technology Prague
    Yonsei University
    China Medical University Hospital, China Medical University)

Abstract

Nanoplastic pollution, the final product of plastic waste fragmentation in the environment, represents an increasing concern for the scientific community due to the easier diffusion and higher hazard associated with their small sizes. Therefore, there is a pressing demand for effective strategies to quantify and remove nanoplastics in wastewater. This work presents the “on-the-fly” capture of nanoplastics in the three-dimensional (3D) space by multifunctional MXene-derived oxide microrobots and their further detection. A thermal annealing process is used to convert Ti3C2Tx MXene into photocatalytic multi-layered TiO2, followed by the deposition of a Pt layer and the decoration with magnetic γ-Fe2O3 nanoparticles. The MXene-derived γ-Fe2O3/Pt/TiO2 microrobots show negative photogravitaxis, resulting in a powerful fuel-free motion with six degrees of freedom under light irradiation. Owing to the unique combination of self-propulsion and programmable Zeta potential, the microrobots can quickly attract and trap nanoplastics on their surface, including the slits between multi-layer stacks, allowing their magnetic collection. Utilized as self-motile preconcentration platforms, they enable nanoplastics’ electrochemical detection using low-cost and portable electrodes. This proof-of-concept study paves the way toward the “on-site” screening of nanoplastics in water and its successive remediation.

Suggested Citation

  • Mario Urso & Martina Ussia & Filip Novotný & Martin Pumera, 2022. "Trapping and detecting nanoplastics by MXene-derived oxide microrobots," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31161-2
    DOI: 10.1038/s41467-022-31161-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31161-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31161-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christine K. Schmidt & Mariana Medina-Sánchez & Richard J. Edmondson & Oliver G. Schmidt, 2020. "Engineering microrobots for targeted cancer therapies from a medical perspective," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeonghyo Kim & Carmen C. Mayorga-Martinez & Martin Pumera, 2023. "Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Sajjad Rahmani Dabbagh & Misagh Rezapour Sarabi & Mehmet Tugrul Birtek & Siamak Seyfi & Metin Sitti & Savas Tasoglu, 2022. "3D-printed microrobots from design to translation," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    4. Nima Mirkhani & Michael G. Christiansen & Tinotenda Gwisai & Stefano Menghini & Simone Schuerle, 2024. "Spatially selective delivery of living magnetic microrobots through torque-focusing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31161-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.