IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31141-6.html
   My bibliography  Save this article

Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation

Author

Listed:
  • Yingying Shen

    (Zhejiang University School of Medicine)

  • Chaojie Lu

    (Zhejiang University School of Medicine)

  • Zhengbo Song

    (Zhejiang Cancer Hospital)

  • Chenxiao Qiao

    (Zhejiang University School of Medicine)

  • Jiaoli Wang

    (Zhejiang University School of Medicine
    Zhejiang University Cancer Centre)

  • Jinbiao Chen

    (Hangzhou Xixi Hospital)

  • Chengyan Zhang

    (Zhejiang University School of Medicine)

  • Xianchang Zeng

    (Zhejiang University School of Medicine)

  • Zeyu Ma

    (Zhejiang University School of Medicine)

  • Tao Chen

    (Zhejiang University School of Medicine)

  • Xu Li

    (Westlake University)

  • Aifu Lin

    (Zhejiang University)

  • Jufeng Guo

    (Zhejiang University School of Medicine)

  • Jianli Wang

    (Zhejiang University School of Medicine
    Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy)

  • Zhijian Cai

    (Zhejiang University School of Medicine)

Abstract

TGF-β is essential for inducing systemic tumor immunosuppression; thus, blocking TGF-β can greatly enhance antitumor immunity. However, there are still no effective TGF-β inhibitors in clinical use. Here, we show that the clinically approved compound ursodeoxycholic acid (UDCA), by degrading TGF-β, enhances antitumor immunity through restraining Treg cell differentiation and activation in tumor-bearing mice. Furthermore, UDCA synergizes with anti-PD-1 to enhance antitumor immunity and tumor-specific immune memory in tumor-bearing mice. UDCA phosphorylates TGF-β at T282 site via TGR5-cAMP-PKA axis, causing increased binding of TGF-β to carboxyl terminus of Hsc70-interacting protein (CHIP). Then, CHIP ubiquitinates TGF-β at the K315 site, initiating p62-dependent autophagic sorting and subsequent degradation of TGF-β. Notably, results of retrospective analysis shows that combination therapy with anti-PD-1 or anti-PD-L1 and UDCA has better efficacy in tumor patients than anti-PD-1 or anti-PD-L1 alone. Thus, our results show a mechanism for TGF-β regulation and implicate UDCA as a potential TGF-β inhibitor to enhance antitumor immunity.

Suggested Citation

  • Yingying Shen & Chaojie Lu & Zhengbo Song & Chenxiao Qiao & Jiaoli Wang & Jinbiao Chen & Chengyan Zhang & Xianchang Zeng & Zeyu Ma & Tao Chen & Xu Li & Aifu Lin & Jufeng Guo & Jianli Wang & Zhijian Ca, 2022. "Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31141-6
    DOI: 10.1038/s41467-022-31141-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31141-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31141-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roy S. Herbst & Jean-Charles Soria & Marcin Kowanetz & Gregg D. Fine & Omid Hamid & Michael S. Gordon & Jeffery A. Sosman & David F. McDermott & John D. Powderly & Scott N. Gettinger & Holbrook E. K. , 2014. "Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients," Nature, Nature, vol. 515(7528), pages 563-567, November.
    2. Chris Schiering & Thomas Krausgruber & Agnieszka Chomka & Anja Fröhlich & Krista Adelmann & Elizabeth A. Wohlfert & Johanna Pott & Thibault Griseri & Julia Bollrath & Ahmed N. Hegazy & Oliver J. Harri, 2014. "The alarmin IL-33 promotes regulatory T-cell function in the intestine," Nature, Nature, vol. 513(7519), pages 564-568, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
    3. Elaine Lai-Han Leung & Run-Ze Li & Xing-Xing Fan & Lily Yan Wang & Yan Wang & Zebo Jiang & Jumin Huang & Hu-Dan Pan & Yue Fan & Hongmei Xu & Feng Wang & Haopeng Rui & Piu Wong & Hermi Sumatoh & Michae, 2023. "Longitudinal high-dimensional analysis identifies immune features associating with response to anti-PD-1 immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Weicai Huang & Yuming Jiang & Wenjun Xiong & Zepang Sun & Chuanli Chen & Qingyu Yuan & Kangneng Zhou & Zhen Han & Hao Feng & Hao Chen & Xiaokun Liang & Shitong Yu & Yanfeng Hu & Jiang Yu & Yan Chen & , 2022. "Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Matthew T. Campbell & Surena F. Matin & Alda L. Tam & Rahul A. Sheth & Kamran Ahrar & Rebecca S. Tidwell & Priya Rao & Jose A. Karam & Christopher G. Wood & Nizar M. Tannir & Eric Jonasch & Jianjun Ga, 2021. "Pilot study of Tremelimumab with and without cryoablation in patients with metastatic renal cell carcinoma," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Stefanie Hiltbrunner & Lena Cords & Sabrina Kasser & Sandra N. Freiberger & Susanne Kreutzer & Nora C. Toussaint & Linda Grob & Isabelle Opitz & Michael Messerli & Martin Zoche & Alex Soltermann & Mar, 2023. "Acquired resistance to anti-PD1 therapy in patients with NSCLC associates with immunosuppressive T cell phenotype," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Su Yin Lim & Elena Shklovskaya & Jenny H. Lee & Bernadette Pedersen & Ashleigh Stewart & Zizhen Ming & Mal Irvine & Brindha Shivalingam & Robyn P. M. Saw & Alexander M. Menzies & Matteo S. Carlino & R, 2023. "The molecular and functional landscape of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Michiel S. Heijden & Thomas Powles & Daniel Petrylak & Ronald Wit & Andrea Necchi & Cora N. Sternberg & Nobuaki Matsubara & Hiroyuki Nishiyama & Daniel Castellano & Syed A. Hussain & Aristotelis Bamia, 2022. "Predictive biomarkers for survival benefit with ramucirumab in urothelial cancer in the RANGE trial," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Anhao Liu & Mikihito Hayashi & Yujin Ohsugi & Sayaka Katagiri & Shizuo Akira & Takanori Iwata & Tomoki Nakashima, 2024. "The IL-33/ST2 axis is protective against acute inflammation during the course of periodontitis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Isaac Dean & Colin Y. C. Lee & Zewen K. Tuong & Zhi Li & Christopher A. Tibbitt & Claire Willis & Fabrina Gaspal & Bethany C. Kennedy & Veronika Matei-Rascu & Rémi Fiancette & Caroline Nordenvall & Ul, 2024. "Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Lei Guan & Bin Wu & Ting Li & Lynn A. Beer & Gaurav Sharma & Mingyue Li & Chin Nien Lee & Shujing Liu & Changsong Yang & Lili Huang & Dennie T. Frederick & Genevieve M. Boland & Guangcan Shao & Tatyan, 2022. "HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Yi Zhang & Mingjie Wang & Ling Ye & Shengqi Shen & Yuxi Zhang & Xiaoyu Qian & Tong Zhang & Mengqiu Yuan & Zijian Ye & Jin Cai & Xiang Meng & Shiqiao Qiu & Shengzhi Liu & Rui Liu & Weidong Jia & Xianzh, 2024. "HKDC1 promotes tumor immune evasion in hepatocellular carcinoma by coupling cytoskeleton to STAT1 activation and PD-L1 expression," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Rachael M. Zemek & Wee Loong Chin & Vanessa S. Fear & Ben Wylie & Thomas H. Casey & Cath Forbes & Caitlin M. Tilsed & Louis Boon & Belinda B. Guo & Anthony Bosco & Alistair R. R. Forrest & Michael J. , 2022. "Temporally restricted activation of IFNβ signaling underlies response to immune checkpoint therapy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Jingjie Yi & Omid Tavana & Huan Li & Donglai Wang & Richard J. Baer & Wei Gu, 2023. "Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Seymour Picciotto & Nicholas DeVita & Chiaowen Joyce Hsiao & Christopher Honan & Sze-Wah Tse & Mychael Nguyen & Joseph D. Ferrari & Wei Zheng & Brian T. Wipke & Eric Huang, 2022. "Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Marco Calafiore & Ya-Yuan Fu & Paola Vinci & Viktor Arnhold & Winston Y. Chang & Suze A. Jansen & Anastasiya Egorova & Shuichiro Takashima & Jason Kuttiyara & Takahiro Ito & Jonathan Serody & Susumu N, 2023. "A tissue-intrinsic IL-33/EGF circuit promotes epithelial regeneration after intestinal injury," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Le Qin & Yuanbin Cui & Tingjie Yuan & Dongmei Chen & Ruocong Zhao & Shanglin Li & Zhiwu Jiang & Qiting Wu & Youguo Long & Suna Wang & Zhaoyang Tang & Huixia Pan & Xiaoping Li & Wei Wei & Jie Yang & Xu, 2022. "Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Yu-Ting Yen & May Chien & Pei-Yi Wu & Chi-Chang Ho & Chun-Te Ho & Kevin Chih-Yang Huang & Shu-Fen Chiang & K. S. Clifford Chao & William Tzu-Liang Chen & Shih-Chieh Hung, 2021. "Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    19. Jodi M. Carter & Saranya Chumsri & Douglas A. Hinerfeld & Yaohua Ma & Xue Wang & David Zahrieh & David W. Hillman & Kathleen S. Tenner & Jennifer M. Kachergus & Heather Ann Brauer & Sarah E. Warren & , 2023. "Distinct spatial immune microlandscapes are independently associated with outcomes in triple-negative breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Zhaoyun Ding & Ting Cai & Jupei Tang & Hanxiao Sun & Xinyi Qi & Yunpeng Zhang & Yan Ji & Liyun Yuan & Huidan Chang & Yanhui Ma & Hong Zhou & Li Li & Huiming Sheng & Ju Qiu, 2022. "Setd2 supports GATA3+ST2+ thymic-derived Treg cells and suppresses intestinal inflammation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31141-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.