IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30769-8.html
   My bibliography  Save this article

Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4

Author

Listed:
  • Tao Hong

    (Oak Ridge National Laboratory)

  • Tao Ying

    (Harbin Institute of Technology)

  • Qing Huang

    (University of Tennessee)

  • Sachith E. Dissanayake

    (University of Rochester)

  • Yiming Qiu

    (National Institute of Standards and Technology)

  • Mark M. Turnbull

    (Clark University)

  • Andrey A. Podlesnyak

    (Oak Ridge National Laboratory)

  • Yan Wu

    (Oak Ridge National Laboratory)

  • Huibo Cao

    (Oak Ridge National Laboratory)

  • Yaohua Liu

    (Oak Ridge National Laboratory
    Oak Ridge National Laboratory)

  • Izuru Umehara

    (Yokohama National University)

  • Jun Gouchi

    (University of Tokyo)

  • Yoshiya Uwatoko

    (University of Tokyo)

  • Masaaki Matsuda

    (Oak Ridge National Laboratory)

  • David A. Tennant

    (University of Tennessee
    University of Tennessee)

  • Gia-Wei Chern

    (University of Virginia)

  • Kai P. Schmidt

    (Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg)

  • Stefan Wessel

    (JARA-FIT and JARA-HPC, RWTH Aachen University)

Abstract

Quantum phase transitions in quantum matter occur at zero temperature between distinct ground states by tuning a nonthermal control parameter. Often, they can be accurately described within the Landau theory of phase transitions, similarly to conventional thermal phase transitions. However, this picture can break down under certain circumstances. Here, we present a comprehensive study of the effect of hydrostatic pressure on the magnetic structure and spin dynamics of the spin-1/2 ladder compound C9H18N2CuBr4. Single-crystal heat capacity and neutron diffraction measurements reveal that the Néel-ordered phase breaks down beyond a critical pressure of Pc ∼ 1.0 GPa through a continuous quantum phase transition. Estimates of the critical exponents suggest that this transition may fall outside the traditional Landau paradigm. The inelastic neutron scattering spectra at 1.3 GPa are characterized by two well-separated gapped modes, including one continuum-like and another resolution-limited excitation in distinct scattering channels, which further indicates an exotic quantum-disordered phase above Pc.

Suggested Citation

  • Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30769-8
    DOI: 10.1038/s41467-022-30769-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30769-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30769-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Hong & Y. Qiu & M. Matsumoto & D. A. Tennant & K. Coester & K. P. Schmidt & F. F. Awwadi & M. M. Turnbull & H. Agrawal & A. L. Chernyshev, 2017. "Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    2. Seung-Hwan Do & Hao Zhang & Travis J. Williams & Tao Hong & V. Ovidiu Garlea & J. A. Rodriguez-Rivera & Tae-Hwan Jang & Sang-Wook Cheong & Jae-Hoon Park & Cristian D. Batista & Andrew D. Christianson, 2021. "Decay and renormalization of a longitudinal mode in a quasi-two-dimensional antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Matthew B. Stone & Igor A. Zaliznyak & Tao Hong & Collin L. Broholm & Daniel H. Reich, 2006. "Quasiparticle breakdown in a quantum spin liquid," Nature, Nature, vol. 440(7081), pages 187-190, March.
    4. Leon Balents, 2010. "Spin liquids in frustrated magnets," Nature, Nature, vol. 464(7286), pages 199-208, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirill Yu. Povarov & David E. Graf & Andreas Hauspurg & Sergei Zherlitsyn & Joachim Wosnitza & Takahiro Sakurai & Hitoshi Ohta & Shojiro Kimura & Hiroyuki Nojiri & V. Ovidiu Garlea & Andrey Zheludev &, 2024. "Pressure-tuned quantum criticality in the large-D antiferromagnet DTN," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunsuke Hasegawa & Hodaka Kikuchi & Shinichiro Asai & Zijun Wei & Barry Winn & Gabriele Sala & Shinichi Itoh & Takatsugu Masuda, 2024. "Field control of quasiparticle decay in a quantum antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Xiaojian Bai & Shang-Shun Zhang & Hao Zhang & Zhiling Dun & W. Adam Phelan & V. Ovidiu Garlea & Martin Mourigal & Cristian D. Batista, 2023. "Instabilities of heavy magnons in an anisotropic magnet," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Kirill Yu. Povarov & David E. Graf & Andreas Hauspurg & Sergei Zherlitsyn & Joachim Wosnitza & Takahiro Sakurai & Hitoshi Ohta & Shojiro Kimura & Hiroyuki Nojiri & V. Ovidiu Garlea & Andrey Zheludev &, 2024. "Pressure-tuned quantum criticality in the large-D antiferromagnet DTN," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Schmidt, M. & Zimmer, F.M. & Magalhaes, S.G., 2015. "Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 416-423.
    6. Youngsu Choi & Suheon Lee & Je-Ho Lee & Seungyeol Lee & Maeng-Je Seong & Kwang-Yong Choi, 2021. "Bosonic spinons in anisotropic triangular antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. S. A. Zvyagin & A. N. Ponomaryov & J. Wosnitza & D. Hirai & Z. Hiroi & M. Gen & Y. Kohama & A. Matsuo & Y. H. Matsuda & K. Kindo, 2022. "Dimensional reduction and incommensurate dynamic correlations in the $$S=\frac{1}{2}$$ S = 1 2 triangular-lattice antiferromagnet Ca3ReO5Cl2," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Alessio Chiocchetta & Dominik Kiese & Carl Philipp Zelle & Francesco Piazza & Sebastian Diehl, 2021. "Cavity-induced quantum spin liquids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Xu-Guang Zhou & Han Li & Yasuhiro H. Matsuda & Akira Matsuo & Wei Li & Nobuyuki Kurita & Gang Su & Koichi Kindo & Hidekazu Tanaka, 2023. "Possible intermediate quantum spin liquid phase in α-RuCl3 under high magnetic fields up to 100 T," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Jiangang Yang & Xinwei Yi & Zhen Zhao & Yuyang Xie & Taimin Miao & Hailan Luo & Hao Chen & Bo Liang & Wenpei Zhu & Yuhan Ye & Jing-Yang You & Bo Gu & Shenjin Zhang & Fengfeng Zhang & Feng Yang & Zhimi, 2023. "Observation of flat band, Dirac nodal lines and topological surface states in Kagome superconductor CsTi3Bi5," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    14. Bin Gao & Tong Chen & Xiao-Chuan Wu & Michael Flynn & Chunruo Duan & Lebing Chen & Chien-Lung Huang & Jesse Liebman & Shuyi Li & Feng Ye & Matthew B. Stone & Andrey Podlesnyak & Douglas L. Abernathy &, 2023. "Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. A. Pustogow & Y. Kawasugi & H. Sakurakoji & N. Tajima, 2023. "Chasing the spin gap through the phase diagram of a frustrated Mott insulator," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    16. Yuki Nakata & Katsuaki Sugawara & Ashish Chainani & Hirofumi Oka & Changhua Bao & Shaohua Zhou & Pei-Yu Chuang & Cheng-Maw Cheng & Tappei Kawakami & Yasuaki Saruta & Tomoteru Fukumura & Shuyun Zhou & , 2021. "Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Daisuke Yamamoto & Takahiro Sakurai & Ryosuke Okuto & Susumu Okubo & Hitoshi Ohta & Hidekazu Tanaka & Yoshiya Uwatoko, 2021. "Continuous control of classical-quantum crossover by external high pressure in the coupled chain compound CsCuCl3," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Han Zhang & Chengkun Xing & Kyle Noordhoek & Zhaoyu Liu & Tianhao Zhao & Lukas Horák & Qing Huang & Lin Hao & Junyi Yang & Shashi Pandey & Elbio Dagotto & Zhigang Jiang & Jiun-Haw Chu & Yan Xin & Eun , 2023. "Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. A. Nag & A. Nocera & S. Agrestini & M. Garcia-Fernandez & A. C. Walters & Sang-Wook Cheong & S. Johnston & Ke-Jin Zhou, 2022. "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Mengzhu Shi & Fanghang Yu & Ye Yang & Fanbao Meng & Bin Lei & Yang Luo & Zhe Sun & Junfeng He & Rui Wang & Zhicheng Jiang & Zhengtai Liu & Dawei Shen & Tao Wu & Zhenyu Wang & Ziji Xiang & Jianjun Ying, 2022. "A new class of bilayer kagome lattice compounds with Dirac nodal lines and pressure-induced superconductivity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30769-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.