IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30634-8.html
   My bibliography  Save this article

Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche

Author

Listed:
  • Yi Zhou

    (Zhejiang University)

  • Peng Ke

    (Zhejiang University
    Shengli Clinical Medical College, Fujian Medical University)

  • Xiaoyan Bao

    (Zhejiang University)

  • Honghui Wu

    (Zhejiang University)

  • Yiyi Xia

    (Zhejiang University)

  • Zhentao Zhang

    (Zhejiang University)

  • Haiqing Zhong

    (Zhejiang University)

  • Qi Dai

    (Zhejiang University
    Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University)

  • Linjie Wu

    (Zhejiang University)

  • Tiantian Wang

    (Zhejiang University)

  • Mengting Lin

    (Zhejiang University)

  • Yaosheng Li

    (Zhejiang University)

  • Xinchi Jiang

    (Zhejiang University)

  • Qiyao Yang

    (Zhejiang University
    Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University)

  • Yiying Lu

    (Zhejiang University)

  • Xincheng Zhong

    (Zhejiang University)

  • Min Han

    (Zhejiang University
    Cancer Center of Zhejiang University, Zhejiang University
    Hangzhou Institute of Innovative Medicine, Zhejiang University)

  • Jianqing Gao

    (Zhejiang University
    Cancer Center of Zhejiang University, Zhejiang University
    Hangzhou Institute of Innovative Medicine, Zhejiang University)

Abstract

There is evidence to suggest that the primary tumor induces the formation of a pre-metastatic niche in distal organs by stimulating the production of pro-metastatic factors. Given the fundamental role of the pre-metastatic niche in the development of metastases, interruption of its formation would be a promising strategy to take early action against tumor metastasis. Here we report an enzyme-activated assembled peptide FR17 that can serve as a “flame-retarding blanket” in the pre-metastatic niche specifically to extinguish the “fire” of tumor-supportive microenvironment adaption. We show that the in-situ assembled peptide nano-blanket inhibits fibroblasts activation, suppressing the remodeling of the metastasis-supportive host stromal tissue, and reversing vascular destabilization and angiogenesis. Furthermore, we demonstrate that the nano-blanket prevents the recruitment of myeloid cells to the pre-metastatic niche, regulating the immune-suppressive microenvironment. We show that FR17 administration effectively inhibits the formation of the pulmonary pre-metastatic niche and postoperative metastasis, offering a therapeutic strategy against pre-metastatic niche formation.

Suggested Citation

  • Yi Zhou & Peng Ke & Xiaoyan Bao & Honghui Wu & Yiyi Xia & Zhentao Zhang & Haiqing Zhong & Qi Dai & Linjie Wu & Tiantian Wang & Mengting Lin & Yaosheng Li & Xinchi Jiang & Qiyao Yang & Yiying Lu & Xinc, 2022. "Peptide nano-blanket impedes fibroblasts activation and subsequent formation of pre-metastatic niche," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30634-8
    DOI: 10.1038/s41467-022-30634-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30634-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30634-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maren Pein & Jacob Insua-Rodríguez & Tsunaki Hongu & Angela Riedel & Jasmin Meier & Lena Wiedmann & Kristin Decker & Marieke A. G. Essers & Hans-Peter Sinn & Saskia Spaich & Marc Sütterlin & Andreas S, 2020. "Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    2. Yuan Gao & Junfeng Shi & Dan Yuan & Bing Xu, 2012. "Imaging enzyme-triggered self-assembly of small molecules inside live cells," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    3. Christopher Abbosh & Nicolai J. Birkbak & Gareth A. Wilson & Mariam Jamal-Hanjani & Tudor Constantin & Raheleh Salari & John Le Quesne & David A. Moore & Selvaraju Veeriah & Rachel Rosenthal & Teresa , 2017. "Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution," Nature, Nature, vol. 545(7655), pages 446-451, May.
    4. Zhihao Lu & Jianling Zou & Shuang Li & Michael J. Topper & Yong Tao & Hao Zhang & Xi Jiao & Wenbing Xie & Xiangqian Kong & Michelle Vaz & Huili Li & Yi Cai & Limin Xia & Peng Huang & Kristen Rodgers &, 2020. "Epigenetic therapy inhibits metastases by disrupting premetastatic niches," Nature, Nature, vol. 579(7798), pages 284-290, March.
    5. Rosandra N. Kaplan & Rebecca D. Riba & Stergios Zacharoulis & Anna H. Bramley & Loïc Vincent & Carla Costa & Daniel D. MacDonald & David K. Jin & Koji Shido & Scott A. Kerns & Zhenping Zhu & Daniel Hi, 2005. "VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche," Nature, Nature, vol. 438(7069), pages 820-827, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Qiu & Wei Guo & Fan Zhang & Fang Lv & Ying Ji & Yue Peng & Xiaoxi Chen & Hua Bao & Yang Xu & Yang Shao & Fengwei Tan & Qi Xue & Shugeng Gao & Jie He, 2021. "Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Da-Yong Hou & Dong-Bing Cheng & Ni-Yuan Zhang & Zhi-Jia Wang & Xing-Jie Hu & Xin Li & Mei-Yu Lv & Xiang-Peng Li & Ling-Rui Jian & Jin-Peng Ma & Taolei Sun & Zeng-Ying Qiao & Wanhai Xu & Hao Wang, 2024. "In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Lufei Sui & Suming Wang & Debolina Ganguly & Tyler P. El Rayes & Cecilie Askeland & Astrid Børretzen & Danielle Sim & Ole Johan Halvorsen & Gøril Knutsvik & Jarle Arnes & Sura Aziz & Svein Haukaas & W, 2022. "PRSS2 remodels the tumor microenvironment via repression of Tsp1 to stimulate tumor growth and progression," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Nieves Montenegro-Navarro & Claudia García-Báez & Melissa García-Caballero, 2023. "Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Minglu Zhou & Chendong Liu & Bo Li & Junlin Li & Ping Zhang & Yuan Huang & Lian Li, 2024. "Cell surface patching via CXCR4-targeted nanothreads for cancer metastasis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Yibing Han & Takeshi Tomita & Masayoshi Kato & Norihiro Ashihara & Yumiko Higuchi & Hisanori Matoba & Weiyi Wang & Hikaru Hayashi & Yuji Itoh & Satoshi Takahashi & Hiroshi Kurita & Jun Nakayama & Nobu, 2023. "Citrullinated fibrinogen-SAAs complex causes vascular metastagenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Mingyun Bae & Gyuhee Kim & Tae-Rim Lee & Jin Mo Ahn & Hyunwook Park & Sook Ryun Park & Ki Byung Song & Eunsung Jun & Dongryul Oh & Jeong-Won Lee & Young Sik Park & Ki-Won Song & Jeong-Sik Byeon & Bo H, 2023. "Integrative modeling of tumor genomes and epigenomes for enhanced cancer diagnosis by cell-free DNA," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Nicolette M. Fonseca & Corinne Maurice-Dror & Cameron Herberts & Wilson Tu & William Fan & Andrew J. Murtha & Catarina Kollmannsberger & Edmond M. Kwan & Karan Parekh & Elena Schönlau & Cecily Q. Bern, 2024. "Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Zhiyuan Zheng & Ya-nan Li & Shanfen Jia & Mengting Zhu & Lijuan Cao & Min Tao & Jingting Jiang & Shenghua Zhan & Yongjing Chen & Ping-Jin Gao & Weiguo Hu & Ying Wang & Changshun Shao & Yufang Shi, 2021. "Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    10. David Hsiehchen & Leslie Bucheit & Dong Yang & Muhammad Shaalan Beg & Mir Lim & Sunyoung S. Lee & Pashtoon Murtaza Kasi & Ahmed O. Kaseb & Hao Zhu, 2022. "Genetic features and therapeutic relevance of emergent circulating tumor DNA alterations in refractory non-colorectal gastrointestinal cancers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Dan Daniel Erdmann-Pham & Sanjit Singh Batra & Timothy K. Turkalo & James Durbin & Marco Blanchette & Iwei Yeh & Hunter Shain & Boris C. Bastian & Yun S. Song & Daniel S. Rokhsar & Dirk Hockemeyer, 2023. "Tracing cancer evolution and heterogeneity using Hi-C," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Keisuke Nakamura & Ryou Kubota & Takuma Aoyama & Kenji Urayama & Itaru Hamachi, 2023. "Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Keyang Xu & Ai Fu & Zhaoyi Li & Liangbin Miao & Zhonghan Lou & Keying Jiang & Condon Lau & Tao Su & Tiejun Tong & Jianfeng Bao & Aiping Lyu & Hiu Yee Kwan, 2024. "Elevated extracellular matrix protein 1 in circulating extracellular vesicles supports breast cancer progression under obesity conditions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Shijun Ma & Yue Zhao & Wee Chyan Lee & Li-Teng Ong & Puay Leng Lee & Zemin Jiang & Gokce Oguz & Zhitong Niu & Min Liu & Jian Yuan Goh & Wenyu Wang & Matias A. Bustos & Sidse Ehmsen & Adaikalavan Ramas, 2022. "Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Esther R. Berko & Gabriela M. Witek & Smita Matkar & Zaritza O. Petrova & Megan A. Wu & Courtney M. Smith & Alex Daniels & Joshua Kalna & Annie Kennedy & Ivan Gostuski & Colleen Casey & Kateryna Kryts, 2023. "Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Flavia A. Graca & Mamta Rai & Liam C. Hunt & Anna Stephan & Yong-Dong Wang & Brittney Gordon & Ruishan Wang & Giovanni Quarato & Beisi Xu & Yiping Fan & Myriam Labelle & Fabio Demontis, 2022. "The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30634-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.