IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30618-8.html
   My bibliography  Save this article

Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth

Author

Listed:
  • Maria Dzamukova

    (Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute
    Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Tobias M. Brunner

    (Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute
    Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

  • Jadwiga Miotla-Zarebska

    (Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford)

  • Frederik Heinrich

    (Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute)

  • Laura Brylka

    (University Medical Center Hamburg-Eppendorf)

  • Mir-Farzin Mashreghi

    (Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute
    BIH Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin)

  • Anjali Kusumbe

    (Tissue and Tumour Microenvironments Group, University of Oxford)

  • Ralf Kühn

    (Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC))

  • Thorsten Schinke

    (University Medical Center Hamburg-Eppendorf)

  • Tonia L. Vincent

    (Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford)

  • Max Löhning

    (Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute
    Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)

Abstract

Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.

Suggested Citation

  • Maria Dzamukova & Tobias M. Brunner & Jadwiga Miotla-Zarebska & Frederik Heinrich & Laura Brylka & Mir-Farzin Mashreghi & Anjali Kusumbe & Ralf Kühn & Thorsten Schinke & Tonia L. Vincent & Max Löhning, 2022. "Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30618-8
    DOI: 10.1038/s41467-022-30618-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30618-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30618-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lijun Wang & Xiuling You & Sutada Lotinun & Lingli Zhang & Nan Wu & Weiguo Zou, 2020. "Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Tuomas Tammela & Georgia Zarkada & Elisabet Wallgard & Aino Murtomäki & Steven Suchting & Maria Wirzenius & Marika Waltari & Mats Hellström & Tibor Schomber & Reetta Peltonen & Catarina Freitas & Anto, 2008. "Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation," Nature, Nature, vol. 454(7204), pages 656-660, July.
    3. Saravana K. Ramasamy & Anjali P. Kusumbe & Lin Wang & Ralf H. Adams, 2014. "Endothelial Notch activity promotes angiogenesis and osteogenesis in bone," Nature, Nature, vol. 507(7492), pages 376-380, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Farber & Yanhan Dong & Qiaozi Wang & Mitesh Rathod & Haofei Wang & Michelle Dixit & Benjamin Keepers & Yifang Xie & Kendall Butz & William J. Polacheck & Jiandong Liu & Li Qian, 2024. "Direct conversion of cardiac fibroblasts into endothelial-like cells using Sox17 and Erg," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Alexandra N. Rindone & Xiaonan Liu & Stephanie Farhat & Alexander Perdomo-Pantoja & Timothy F. Witham & Daniel L. Coutu & Mei Wan & Warren L. Grayson, 2021. "Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Till Fabian Mertens & Alina Tabea Liebheit & Johanna Ehl & Ralf Köhler & Asylkhan Rakhymzhan & Andrew Woehler & Lukas Katthän & Gernot Ebel & Wjatscheslaw Liublin & Ana Kasapi & Antigoni Triantafyllop, 2024. "MarShie: a clearing protocol for 3D analysis of single cells throughout the bone marrow at subcellular resolution," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Joschka Heil & Victor Olsavszky & Katrin Busch & Kay Klapproth & Carolina Torre & Carsten Sticht & Kajetan Sandorski & Johannes Hoffmann & Hiltrud Schönhaber & Johanna Zierow & Manuel Winkler & Christ, 2021. "Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Nicolas Verheyen & Astrid Fahrleitner-Pammer & Evgeny Belyavskiy & Martin R Gruebler & Hans Peter Dimai & Karin Amrein & Klemens Ablasser & Johann Martensen & Cristiana Catena & Elisabeth Pieske-Kraig, 2017. "Relationship between bone turnover and left ventricular function in primary hyperparathyroidism: The EPATH trial," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    7. Alia M. Obeidat & Matthew J. Wood & Natalie S. Adamczyk & Shingo Ishihara & Jun Li & Lai Wang & Dongjun Ren & David A. Bennett & Richard J. Miller & Anne-Marie Malfait & Rachel E. Miller, 2023. "Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Raymond K. H. Yip & Joel S. Rimes & Bianca D. Capaldo & François Vaillant & Kellie A. Mouchemore & Bhupinder Pal & Yunshun Chen & Elliot Surgenor & Andrew J. Murphy & Robin L. Anderson & Gordon K. Smy, 2021. "Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    9. Laetitia Préau & Anna Lischke & Melanie Merkel & Neslihan Oegel & Maria Weissenbruch & Andria Michael & Hongryeol Park & Dietmar Gradl & Christian Kupatt & Ferdinand Noble, 2024. "Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    10. Peng Liao & Long Chen & Hao Zhou & Jiong Mei & Ziming Chen & Bingqi Wang & Jerry Q. Feng & Guangyi Li & Sihan Tong & Jian Zhou & Siyuan Zhu & Yu Qian & Yao Zong & Weiguo Zou & Hao Li & Wenkan Zhang & , 2024. "Osteocyte mitochondria regulate angiogenesis of transcortical vessels," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Haruko Watanabe-Takano & Katsuhiro Kato & Eri Oguri-Nakamura & Tomohiro Ishii & Koji Kobayashi & Takahisa Murata & Koichiro Tsujikawa & Takaki Miyata & Yoshiaki Kubota & Yasuyuki Hanada & Koichi Nishi, 2024. "Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Hai-Bo Zhang & Xiao-Bao Ding & Jie Jin & Wen-Ping Guo & Qiao-Lei Yang & Peng-Cheng Chen & Heng Yao & Li Ruan & Yu-Tian Tao & Xin Chen, 2022. "Predicted mouse interactome and network-based interpretation of differentially expressed genes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
    13. Jeremiah Bernier-Latmani & Cristina Mauri & Rachel Marcone & François Renevey & Stephan Durot & Liqun He & Michael Vanlandewijck & Catherine Maclachlan & Suzel Davanture & Nicola Zamboni & Graham W. K, 2022. "ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30618-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.