IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30550-x.html
   My bibliography  Save this article

Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum

Author

Listed:
  • Anna Kokla

    (Linnean Center for Plant Biology, Swedish University of Agricultural Sciences)

  • Martina Leso

    (Linnean Center for Plant Biology, Swedish University of Agricultural Sciences)

  • Xiang Zhang

    (Nara Institute of Science and Technology, Grad. School. Sci. Tech., Ikoma)

  • Jan Simura

    (Swedish University of Agricultural Sciences)

  • Phanu T. Serivichyaswat

    (Linnean Center for Plant Biology, Swedish University of Agricultural Sciences)

  • Songkui Cui

    (Nara Institute of Science and Technology, Grad. School. Sci. Tech., Ikoma)

  • Karin Ljung

    (Swedish University of Agricultural Sciences)

  • Satoko Yoshida

    (Nara Institute of Science and Technology, Grad. School. Sci. Tech., Ikoma)

  • Charles W. Melnyk

    (Linnean Center for Plant Biology, Swedish University of Agricultural Sciences)

Abstract

Parasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. The external environment including nutrient availability affects the extent of parasitism and to understand this phenomenon, we investigated the role of nutrients and found that nitrogen is sufficient to repress haustoria formation in the root parasite Phtheirospermum japonicum. Nitrogen increases levels of abscisic acid (ABA) in P. japonicum and prevents the activation of hundreds of genes including cell cycle and xylem development genes. Blocking ABA signaling overcomes nitrogen’s inhibitory effects indicating that nitrogen represses haustoria formation by increasing ABA. The effect of nitrogen appears more widespread since nitrogen also inhibits haustoria in the obligate root parasite Striga hermonthica. Together, our data show that nitrogen acts as a haustoria repressing factor and suggests a mechanism whereby parasitic plants use nitrogen availability in the external environment to regulate the extent of parasitism.

Suggested Citation

  • Anna Kokla & Martina Leso & Xiang Zhang & Jan Simura & Phanu T. Serivichyaswat & Songkui Cui & Karin Ljung & Satoko Yoshida & Charles W. Melnyk, 2022. "Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30550-x
    DOI: 10.1038/s41467-022-30550-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30550-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30550-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takema Sasaki & Takuya Suzaki & Takashi Soyano & Mikiko Kojima & Hitoshi Sakakibara & Masayoshi Kawaguchi, 2014. "Shoot-derived cytokinins systemically regulate root nodulation," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    2. Anuphon Laohavisit & Takanori Wakatake & Nobuaki Ishihama & Hugh Mulvey & Kaori Takizawa & Takamasa Suzuki & Ken Shirasu, 2020. "Quinone perception in plants via leucine-rich-repeat receptor-like kinases," Nature, Nature, vol. 587(7832), pages 92-97, November.
    3. Saima Shahid & Gunjune Kim & Nathan R. Johnson & Eric Wafula & Feng Wang & Ceyda Coruh & Vivian Bernal-Galeano & Tamia Phifer & Claude W. dePamphilis & James H. Westwood & Michael J. Axtell, 2018. "MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs," Nature, Nature, vol. 553(7686), pages 82-85, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Ogawa & Songkui Cui & Alexandra R. F. White & David C. Nelson & Satoko Yoshida & Ken Shirasu, 2022. "Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jiahuan Chen & Zhijuan Wang & Lixiang Wang & Yangyang Hu & Qiqi Yan & Jingjing Lu & Ziyin Ren & Yujie Hong & Hongtao Ji & Hui Wang & Xinying Wu & Yanru Lin & Chao Su & Thomas Ott & Xia Li, 2022. "The B-type response regulator GmRR11d mediates systemic inhibition of symbiotic nodulation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Baoye He & Huan Wang & Guosheng Liu & Angela Chen & Alejandra Calvo & Qiang Cai & Hailing Jin, 2023. "Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jieshun Lin & Yuda Purwana Roswanjaya & Wouter Kohlen & Jens Stougaard & Dugald Reid, 2021. "Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Giuseppe Malgioglio & Giulio Flavio Rizzo & Sebastian Nigro & Vincent Lefebvre du Prey & Joelle Herforth-Rahmé & Vittoria Catara & Ferdinando Branca, 2022. "Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application," Sustainability, MDPI, vol. 14(4), pages 1-28, February.
    6. Ziwei Zhu & Jun Xiong & Hao Shi & Yuchen Liu & Junjie Yin & Kaiwei He & Tianyu Zhou & Liting Xu & Xiaobo Zhu & Xiang Lu & Yongyan Tang & Li Song & Qingqing Hou & Qing Xiong & Long Wang & Daihua Ye & T, 2023. "Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30550-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.