IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30515-0.html
   My bibliography  Save this article

CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context

Author

Listed:
  • Giulia I. Corsi

    (University of Copenhagen)

  • Kunli Qu

    (Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao
    University of Copenhagen)

  • Ferhat Alkan

    (University of Copenhagen
    The Netherlands Cancer Institute)

  • Xiaoguang Pan

    (Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao)

  • Yonglun Luo

    (Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao
    BGI-Shenzhen
    Aarhus University
    Aarhus University Hospital)

  • Jan Gorodkin

    (University of Copenhagen)

Abstract

A major challenge of CRISPR/Cas9-mediated genome engineering is that not all guide RNAs (gRNAs) cleave the DNA efficiently. Although the heterogeneity of gRNA activity is well recognized, the current understanding of how CRISPR/Cas9 activity is regulated remains incomplete. Here, we identify a sweet spot range of binding free energy change for optimal efficiency which largely explains why gRNAs display changes in efficiency at on- and off-target sites, including why gRNAs can cleave an off-target with higher efficiency than the on-target. Using an energy-based model, we show that local gRNA-DNA interactions resulting from Cas9 “sliding” on overlapping protospacer adjacent motifs (PAMs) profoundly impact gRNA activities. Combining the effects of local sliding for a given PAM context with global off-targets allows us to better identify highly specific, and thus efficient, gRNAs. We validate the effects of local sliding on gRNA efficiency using both public data and in-house data generated by measuring SpCas9 cleavage efficiency at 1024 sites designed to cover all possible combinations of 4-nt PAM and context sequences of 4 gRNAs. Our results provide insights into the mechanisms of Cas9-PAM compatibility and cleavage activation, underlining the importance of accounting for local sliding in gRNA design.

Suggested Citation

  • Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30515-0
    DOI: 10.1038/s41467-022-30515-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30515-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30515-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johnny H. Hu & Shannon M. Miller & Maarten H. Geurts & Weixin Tang & Liwei Chen & Ning Sun & Christina M. Zeina & Xue Gao & Holly A. Rees & Zhi Lin & David R. Liu, 2018. "Evolved Cas9 variants with broad PAM compatibility and high DNA specificity," Nature, Nature, vol. 556(7699), pages 57-63, April.
    2. Jungjoon K. Lee & Euihwan Jeong & Joonsun Lee & Minhee Jung & Eunji Shin & Young-hoon Kim & Kangin Lee & Inyoung Jung & Daesik Kim & Seokjoong Kim & Jin-Soo Kim, 2018. "Directed evolution of CRISPR-Cas9 to increase its specificity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Summer B. Thyme & Laila Akhmetova & Tessa G. Montague & Eivind Valen & Alexander F. Schier, 2016. "Internal guide RNA interactions interfere with Cas9-mediated cleavage," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    4. Daqi Wang & Chengdong Zhang & Bei Wang & Bin Li & Qiang Wang & Dong Liu & Hongyan Wang & Yan Zhou & Leming Shi & Feng Lan & Yongming Wang, 2019. "Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Xi Xiang & Giulia I. Corsi & Christian Anthon & Kunli Qu & Xiaoguang Pan & Xue Liang & Peng Han & Zhanying Dong & Lijun Liu & Jiayan Zhong & Tao Ma & Jinbao Wang & Xiuqing Zhang & Hui Jiang & Fengping, 2021. "Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Janice S. Chen & Yavuz S. Dagdas & Benjamin P. Kleinstiver & Moira M. Welch & Alexander A. Sousa & Lucas B. Harrington & Samuel H. Sternberg & J. Keith Joung & Ahmet Yildiz & Jennifer A. Doudna, 2017. "Enhanced proofreading governs CRISPR–Cas9 targeting accuracy," Nature, Nature, vol. 550(7676), pages 407-410, October.
    7. Rongjie Fu & Wei He & Jinzhuang Dou & Oscar D. Villarreal & Ella Bedford & Helen Wang & Connie Hou & Liang Zhang & Yalong Wang & Dacheng Ma & Yiwen Chen & Xue Gao & Martin Depken & Han Xu, 2022. "Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Benjamin P. Kleinstiver & Michelle S. Prew & Shengdar Q. Tsai & Ved V. Topkar & Nhu T. Nguyen & Zongli Zheng & Andrew P. W. Gonzales & Zhuyun Li & Randall T. Peterson & Jing-Ruey Joanna Yeh & Martin J, 2015. "Engineered CRISPR-Cas9 nucleases with altered PAM specificities," Nature, Nature, vol. 523(7561), pages 481-485, July.
    9. Samuel H. Sternberg & Benjamin LaFrance & Matias Kaplan & Jennifer A. Doudna, 2015. "Conformational control of DNA target cleavage by CRISPR–Cas9," Nature, Nature, vol. 527(7576), pages 110-113, November.
    10. E. A. Moreb & M. D. Lynch, 2021. "Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    12. Cong Huai & Gan Li & Ruijie Yao & Yingyi Zhang & Mi Cao & Liangliang Kong & Chenqiang Jia & Hui Yuan & Hongyan Chen & Daru Lu & Qiang Huang, 2017. "Structural insights into DNA cleavage activation of CRISPR-Cas9 system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Fang Liang & Yu Zhang & Lin Li & Yexin Yang & Ji-Feng Fei & Yanmei Liu & Wei Qin, 2022. "SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Annabel K. Sangree & Audrey L. Griffith & Zsofia M. Szegletes & Priyanka Roy & Peter C. DeWeirdt & Mudra Hegde & Abby V. McGee & Ruth E. Hanna & John G. Doench, 2022. "Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Dipankar Baisya & Adithya Ramesh & Cory Schwartz & Stefano Lonardi & Ian Wheeldon, 2022. "Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Xu Feng & Ruyi Xu & Jianglan Liao & Jingyu Zhao & Baochang Zhang & Xiaoxiao Xu & Pengpeng Zhao & Xiaoning Wang & Jianyun Yao & Pengxia Wang & Xiaoxue Wang & Wenyuan Han & Qunxin She, 2024. "Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Yanbo Wang & W. Taylor Cottle & Haobo Wang & Momcilo Gavrilov & Roger S. Zou & Minh-Tam Pham & Srinivasan Yegnasubramanian & Scott Bailey & Taekjip Ha, 2022. "Achieving single nucleotide sensitivity in direct hybridization genome imaging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Jeremy Vicencio & Carlos Sánchez-Bolaños & Ismael Moreno-Sánchez & David Brena & Charles E. Vejnar & Dmytro Kukhtar & Miguel Ruiz-López & Mariona Cots-Ponjoan & Alejandro Rubio & Natalia Rodrigo Meler, 2022. "Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Marius Rutkauskas & Inga Songailiene & Patrick Irmisch & Felix E. Kemmerich & Tomas Sinkunas & Virginijus Siksnys & Ralf Seidel, 2022. "A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Stephan Riesenberg & Nelly Helmbrecht & Philipp Kanis & Tomislav Maricic & Svante Pääbo, 2022. "Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Grace N. Hibshman & Jack P. K. Bravo & Matthew M. Hooper & Tyler L. Dangerfield & Hongshan Zhang & Ilya J. Finkelstein & Kenneth A. Johnson & David W. Taylor, 2024. "Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30515-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.