IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30308-5.html
   My bibliography  Save this article

Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization

Author

Listed:
  • Samuele Giannini

    (University College London
    University of Mons)

  • Wei-Tao Peng

    (University College London)

  • Lorenzo Cupellini

    (Universitá di Pisa)

  • Daniele Padula

    (Universitá di Siena)

  • Antoine Carof

    (Université de Lorraine)

  • Jochen Blumberger

    (University College London)

Abstract

Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.

Suggested Citation

  • Samuele Giannini & Wei-Tao Peng & Lorenzo Cupellini & Daniele Padula & Antoine Carof & Jochen Blumberger, 2022. "Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30308-5
    DOI: 10.1038/s41467-022-30308-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30308-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30308-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Li & Jiadong Zhou & Jiali Song & Jinqiu Xu & Huotian Zhang & Xuning Zhang & Jing Guo & Lei Zhu & Donghui Wei & Guangchao Han & Jie Min & Yuan Zhang & Zengqi Xie & Yuanping Yi & He Yan & Feng Gao , 2021. "Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells," Nature Energy, Nature, vol. 6(6), pages 605-613, June.
    2. Yuliar Firdaus & Vincent M. Le Corre & Safakath Karuthedath & Wenlan Liu & Anastasia Markina & Wentao Huang & Shirsopratim Chattopadhyay & Masrur Morshed Nahid & Mohamad I. Nugraha & Yuanbao Lin & Akm, 2020. "Long-range exciton diffusion in molecular non-fullerene acceptors," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Samuele Giannini & Antoine Carof & Matthew Ellis & Hui Yang & Orestis George Ziogos & Soumya Ghosh & Jochen Blumberger, 2019. "Quantum localization and delocalization of charge carriers in organic semiconducting crystals," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Yifan Dong & Vasileios C. Nikolis & Felix Talnack & Yi-Chun Chin & Johannes Benduhn & Giacomo Londi & Jonas Kublitski & Xijia Zheng & Stefan C. B. Mannsfeld & Donato Spoltore & Luca Muccioli & Jing Li, 2020. "Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remington L. Carey & Samuele Giannini & Sam Schott & Vincent Lemaur & Mingfei Xiao & Suryoday Prodhan & Linjun Wang & Michelangelo Bovoloni & Claudio Quarti & David Beljonne & Henning Sirringhaus, 2024. "Spin relaxation of electron and hole polarons in ambipolar conjugated polymers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Kai Müller & Karl S. Schellhammer & Nico Gräßler & Bipasha Debnath & Fupin Liu & Yulia Krupskaya & Karl Leo & Martin Knupfer & Frank Ortmann, 2023. "Directed exciton transport highways in organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Arjun Ashoka & Nicolas Gauriot & Aswathy V. Girija & Nipun Sawhney & Alexander J. Sneyd & Kenji Watanabe & Takashi Taniguchi & Jooyoung Sung & Christoph Schnedermann & Akshay Rao, 2022. "Direct observation of ultrafast singlet exciton fission in three dimensions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Michael B. Price & Paul A. Hume & Aleksandra Ilina & Isabella Wagner & Ronnie R. Tamming & Karen E. Thorn & Wanting Jiao & Alison Goldingay & Patrick J. Conaghan & Girish Lakhwani & Nathaniel J. L. K., 2022. "Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yunhao Cai & Qian Li & Guanyu Lu & Hwa Sook Ryu & Yun Li & Hui Jin & Zhihao Chen & Zheng Tang & Guanghao Lu & Xiaotao Hao & Han Young Woo & Chunfeng Zhang & Yanming Sun, 2022. "Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Sri Harish Kumar Paleti & Sandra Hultmark & Jianhua Han & Yuanfan Wen & Han Xu & Si Chen & Emmy Järsvall & Ishita Jalan & Diego Rosas Villalva & Anirudh Sharma & Jafar. I. Khan & Ellen Moons & Ruipeng, 2023. "Hexanary blends: a strategy towards thermally stable organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xuelin Wang & Qianqian Sun & Jinhua Gao & Jian Wang & Chunyu Xu & Xiaoling Ma & Fujun Zhang, 2021. "Recent Progress of Organic Photovoltaics with Efficiency over 17%," Energies, MDPI, vol. 14(14), pages 1-27, July.
    7. Hao Zhang & Chenyang Tian & Ziqi Zhang & Meiling Xie & Jianqi Zhang & Lingyun Zhu & Zhixiang Wei, 2023. "Concretized structural evolution supported assembly-controlled film-forming kinetics in slot-die coated organic photovoltaics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Bin Liu & Huiliang Sun & Jin-Woo Lee & Zhengyan Jiang & Junqin Qiao & Junwei Wang & Jie Yang & Kui Feng & Qiaogan Liao & Mingwei An & Bolin Li & Dongxue Han & Baomin Xu & Hongzhen Lian & Li Niu & Bumj, 2023. "Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Guangpei Sun & Xin Jiang & Xiaojun Li & Lei Meng & Jinyuan Zhang & Shucheng Qin & Xiaolei Kong & Jing Li & Jingming Xin & Wei Ma & Yongfang Li, 2022. "High performance polymerized small molecule acceptor by synergistic optimization on π-bridge linker and side chain," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Qiuju Liang & Jianhong Yao & Zhangbo Hu & Puxin Wei & Haodong Lu & Yukai Yin & Kang Wang & Jiangang Liu, 2021. "Recent Advances of Film–Forming Kinetics in Organic Solar Cells," Energies, MDPI, vol. 14(22), pages 1-26, November.
    12. Alexander N. Solodukhin & Yuriy N. Luponosov & Artur L. Mannanov & Petr S. Savchenko & Artem V. Bakirov & Maxim A. Shcherbina & Sergei N. Chvalun & Dmitry Yu. Paraschuk & Sergey A. Ponomarenko, 2021. "Branched Electron-Donor Core Effect in D-π-A Star-Shaped Small Molecules on Their Properties and Performance in Single-Component and Bulk-Heterojunction Organic Solar Cells †," Energies, MDPI, vol. 14(12), pages 1-14, June.
    13. Daniel Corzo & Diego Rosas-Villalva & Amruth C & Guillermo Tostado-Blázquez & Emily Bezerra Alexandre & Luis Huerta Hernandez & Jianhua Han & Han Xu & Maxime Babics & Stefaan Wolf & Derya Baran, 2023. "High-performing organic electronics using terpene green solvents from renewable feedstocks," Nature Energy, Nature, vol. 8(1), pages 62-73, January.
    14. Roberto Sorrentino & Marta Penconi & Anita Andicsová-Eckstein & Guido Scavia & Helena Švajdlenková & Erika Kozma & Silvia Luzzati, 2021. "An N-type Naphthalene Diimide Ionene Polymer as Cathode Interlayer for Organic Solar Cells," Energies, MDPI, vol. 14(2), pages 1-11, January.
    15. Guilong Cai & Yuhao Li & Yuang Fu & Hua Yang & Le Mei & Zhaoyang Nie & Tengfei Li & Heng Liu & Yubin Ke & Xun-Li Wang & Jean-Luc Brédas & Man-Chung Tang & Xiankai Chen & Xiaowei Zhan & Xinhui Lu, 2024. "Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yuang Fu & Tack Ho Lee & Yi-Chun Chin & Richard A. Pacalaj & Chiara Labanti & Song Yi Park & Yifan Dong & Hye Won Cho & Jin Young Kim & Daiki Minami & James R. Durrant & Ji-Seon Kim, 2023. "Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Remington L. Carey & Samuele Giannini & Sam Schott & Vincent Lemaur & Mingfei Xiao & Suryoday Prodhan & Linjun Wang & Michelangelo Bovoloni & Claudio Quarti & David Beljonne & Henning Sirringhaus, 2024. "Spin relaxation of electron and hole polarons in ambipolar conjugated polymers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Han Yu & Yan Wang & Xinhui Zou & Junli Yin & Xiaoyu Shi & Yuhao Li & Heng Zhao & Lingyuan Wang & Ho Ming Ng & Bosen Zou & Xinhui Lu & Kam Sing Wong & Wei Ma & Zonglong Zhu & He Yan & Shangshang Chen, 2023. "Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Xue Lai, & Shiyan Chen, & Xiaoyu Gu, & Hanjian Lai, & Yunpeng Wang, & Yulin Zhu, & Hui Wang, & Jianfei Qu, & Aung Ko Ko Kyaw & Haiping Xia & Feng He, 2023. "Phenanthroline-carbolong interface suppress chemical interactions with active layer enabling long-time stable organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30308-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.