IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30258-y.html
   My bibliography  Save this article

Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors

Author

Listed:
  • Tyler S. Beyett

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • Ciric To

    (Dana-Farber Cancer Institute
    Dana-Farber Cancer Institute
    Harvard Medical School)

  • David E. Heppner

    (Dana-Farber Cancer Institute
    Harvard Medical School
    University at Buffalo)

  • Jaimin K. Rana

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • Anna M. Schmoker

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • Jaebong Jang

    (Dana-Farber Cancer Institute
    Harvard Medical School
    Korea University)

  • Dries J. H. Clercq

    (Dana-Farber Cancer Institute
    Harvard Medical School
    CISTIM)

  • Gabriel Gomez

    (Dana-Farber Cancer Institute)

  • David A. Scott

    (Dana-Farber Cancer Institute
    Harvard Medical School)

  • Nathanael S. Gray

    (Dana-Farber Cancer Institute
    Harvard Medical School
    Stanford University)

  • Pasi A. Jänne

    (Dana-Farber Cancer Institute
    Dana-Farber Cancer Institute
    Harvard Medical School)

  • Michael J. Eck

    (Dana-Farber Cancer Institute
    Harvard Medical School)

Abstract

Lung cancer is frequently caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric EGFR inhibitors offer promise as the next generation of therapeutics, as they are unaffected by common ATP-site resistance mutations and synergize with the drug osimertinib. Here, we examine combinations of ATP-competitive and allosteric inhibitors to better understand the molecular basis for synergy. We identify a subset of irreversible EGFR inhibitors that display positive binding cooperativity and synergy with the allosteric inhibitor JBJ-04-125-02 in several EGFR variants. Structural analysis of these complexes reveals conformational changes occur mainly in the phosphate-binding loop (P-loop). Mutation of F723 in the P-loop reduces cooperative binding and synergy, supporting a mechanism in which F723-mediated contacts between the P-loop and the allosteric inhibitor are critical for synergy. These structural and mechanistic insights will aid in the identification and development of additional inhibitor combinations with potential clinical value.

Suggested Citation

  • Tyler S. Beyett & Ciric To & David E. Heppner & Jaimin K. Rana & Anna M. Schmoker & Jaebong Jang & Dries J. H. Clercq & Gabriel Gomez & David A. Scott & Nathanael S. Gray & Pasi A. Jänne & Michael J. , 2022. "Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30258-y
    DOI: 10.1038/s41467-022-30258-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30258-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30258-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianming Zhang & Francisco J. Adrián & Wolfgang Jahnke & Sandra W. Cowan-Jacob & Allen G. Li & Roxana E. Iacob & Taebo Sim & John Powers & Christine Dierks & Fangxian Sun & Gui-Rong Guo & Qiang Ding &, 2010. "Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors," Nature, Nature, vol. 463(7280), pages 501-506, January.
    2. Wenjun Zhou & Dalia Ercan & Liang Chen & Cai-Hong Yun & Danan Li & Marzia Capelletti & Alexis B. Cortot & Lucian Chirieac & Roxana E. Iacob & Robert Padera & John R. Engen & Kwok-Kin Wong & Michael J., 2009. "Novel mutant-selective EGFR kinase inhibitors against EGFR T790M," Nature, Nature, vol. 462(7276), pages 1070-1074, December.
    3. Andrew A. Wylie & Joseph Schoepfer & Wolfgang Jahnke & Sandra W. Cowan-Jacob & Alice Loo & Pascal Furet & Andreas L. Marzinzik & Xavier Pelle & Jerry Donovan & Wenjing Zhu & Silvia Buonamici & A. Quam, 2017. "The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1," Nature, Nature, vol. 543(7647), pages 733-737, March.
    4. Yong Jia & Cai-Hong Yun & Eunyoung Park & Dalia Ercan & Mari Manuia & Jose Juarez & Chunxiao Xu & Kevin Rhee & Ting Chen & Haikuo Zhang & Sangeetha Palakurthi & Jaebong Jang & Gerald Lelais & Michael , 2016. "Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors," Nature, Nature, vol. 534(7605), pages 129-132, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanjun Li & Monifa A. Fahie & Kaitlyn M. Gilliam & Ryan Pham & Min Chen, 2022. "Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Erik B. Faber & Luxin Sun & Jian Tang & Emily Roberts & Sornakala Ganeshkumar & Nan Wang & Damien Rasmussen & Abir Majumdar & Laura E. Hirsch & Kristen John & An Yang & Hira Khalid & Jon E. Hawkinson , 2023. "Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Shen Zhao & Wu Zhuang & Baohui Han & Zhengbo Song & Wei Guo & Feng Luo & Lin Wu & Yi Hu & Huijuan Wang & Xiaorong Dong & Da Jiang & Mingxia Wang & Liyun Miao & Qian Wang & Junping Zhang & Zhenming Fu , 2023. "Phase 1b trial of anti-EGFR antibody JMT101 and Osimertinib in EGFR exon 20 insertion-positive non-small-cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. R. Sumanth Iyer & Sarah R. Needham & Ioannis Galdadas & Benjamin M. Davis & Selene K. Roberts & Rico C. H. Man & Laura C. Zanetti-Domingues & David T. Clarke & Gilbert O. Fruhwirth & Peter J. Parker &, 2024. "Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Mengmeng Niu & Jing Xu & Yang Liu & Yuhuang Li & Tao He & Liangping Ding & Yajun He & Yong Yi & Fengtian Li & Rongtian Guo & Ya Gao & Rui Li & Luping Li & Mengyuan Fu & Qingyong Hu & Yangkun Luo & Chu, 2021. "FBXL2 counteracts Grp94 to destabilize EGFR and inhibit EGFR-driven NSCLC growth," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Pelin Ayaz & Agatha Lyczek & YiTing Paung & Victoria R. Mingione & Roxana E. Iacob & Parker W. Waal & John R. Engen & Markus A. Seeliger & Yibing Shan & David E. Shaw, 2023. "Structural mechanism of a drug-binding process involving a large conformational change of the protein target," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30258-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.