IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29889-y.html
   My bibliography  Save this article

Bottlenecks and opportunities for synthetic biology biosafety standards

Author

Listed:
  • Lei Pei

    (Biofaction KG)

  • Michele Garfinkel

    (EMBO)

  • Markus Schmidt

    (Biofaction KG)

Abstract

The lack of innovative standards for biosafety in synthetic biology is an unresolved policy gap that limits many potential applications in synthetic biology. We argue that a massive support for standardization in biosafety is required for synthetic biology to flourish.

Suggested Citation

  • Lei Pei & Michele Garfinkel & Markus Schmidt, 2022. "Bottlenecks and opportunities for synthetic biology biosafety standards," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29889-y
    DOI: 10.1038/s41467-022-29889-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29889-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29889-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Tellechea-Luzardo & Leanne Hobbs & Elena Velázquez & Lenka Pelechova & Simon Woods & Víctor Lorenzo & Natalio Krasnogor, 2022. "Versioning biological cells for trustworthy cell engineering," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Brian J. Caliando & Christopher A. Voigt, 2015. "Targeted DNA degradation using a CRISPR device stably carried in the host genome," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    3. Denis A. Malyshev & Kirandeep Dhami & Thomas Lavergne & Tingjian Chen & Nan Dai & Jeremy M. Foster & Ivan R. Corrêa & Floyd E. Romesberg, 2014. "A semi-synthetic organism with an expanded genetic alphabet," Nature, Nature, vol. 509(7500), pages 385-388, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hideto Mori & Nozomu Yachie, 2022. "A framework to efficiently describe and share reproducible DNA materials and construction protocols," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. John P. Marken & Richard M. Murray, 2023. "Addressable and adaptable intercellular communication via DNA messaging," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Dalton R. George & Mark Danciu & Peter W. Davenport & Matthew R. Lakin & James Chappell & Emma K. Frow, 2024. "A bumpy road ahead for genetic biocontainment," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    4. Hinako Kawabe & Christopher A. Thomas & Shuichi Hoshika & Myong-Jung Kim & Myong-Sang Kim & Logan Miessner & Nicholas Kaplan & Jonathan M. Craig & Jens H. Gundlach & Andrew H. Laszlo & Steven A. Benne, 2023. "Enzymatic synthesis and nanopore sequencing of 12-letter supernumerary DNA," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Stefan A. Hoffmann & Yizhi Cai, 2024. "Engineering stringent genetic biocontainment of yeast with a protein stability switch," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Naoki Hayashi & Yong Lai & Jay Fuerte-Stone & Mark Mimee & Timothy K. Lu, 2024. "Cas9-assisted biological containment of a genetically engineered human commensal bacterium and genetic elements," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Rory L. Williams & Richard M. Murray, 2022. "Integrase-mediated differentiation circuits improve evolutionary stability of burdensome and toxic functions in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29889-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.