IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29731-5.html
   My bibliography  Save this article

Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model

Author

Listed:
  • Qizhou Lian

    (Guangzhou Medical University
    the University of Hong Kong)

  • Kui Zhang

    (the University of Chicago
    the University of Chicago)

  • Zhao Zhang

    (the University of Hong Kong)

  • Fuyu Duan

    (Guangzhou Medical University)

  • Liyan Guo

    (Guangzhou Medical University)

  • Weiren Luo

    (The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People’s Hospital, National Clinical Research Centre for Infectious Diseases)

  • Bobo Wing-Yee Mok

    (The University of Hong Kong)

  • Abhimanyu Thakur

    (the University of Chicago
    the University of Chicago)

  • Xiaoshan Ke

    (the University of Chicago
    the University of Chicago)

  • Pedram Motallebnejad

    (the University of Chicago
    the University of Chicago)

  • Vlad Nicolaescu

    (the University of Chicago)

  • Jonathan Chen

    (Northwestern University)

  • Chui Yan Ma

    (Guangzhou Medical University)

  • Xiaoya Zhou

    (the University of Hong Kong)

  • Shuo Han

    (The University of Hong Kong)

  • Teng Han

    (Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine)

  • Wei Zhang

    (Genomic Resource Core Facility, Weill Cornell Medicine)

  • Adrian Y. Tan

    (Genomic Resource Core Facility, Weill Cornell Medicine)

  • Tuo Zhang

    (Genomic Resource Core Facility, Weill Cornell Medicine)

  • Xing Wang

    (Genomic Resource Core Facility, Weill Cornell Medicine)

  • Dong Xu

    (Genomic Resource Core Facility, Weill Cornell Medicine)

  • Jenny Xiang

    (Genomic Resource Core Facility, Weill Cornell Medicine)

  • Aimin Xu

    (The University of Hong Kong)

  • Can Liao

    (Guangzhou Medical University)

  • Fang-Ping Huang

    (Shenzhen University)

  • Ya-Wen Chen

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Jie Na

    (Tsinghua University)

  • Glenn Randall

    (the University of Chicago)

  • Hung-fat Tse

    (the University of Hong Kong)

  • Zhiwei Chen

    (The University of Hong Kong)

  • Yin Chen

    (University of Arizona)

  • Huanhuan Joyce Chen

    (the University of Chicago
    the University of Chicago)

Abstract

Dysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19), with macrophages as one of the main cell types involved. It is urgent to understand the interactions among permissive cells, macrophages, and the SARS-CoV-2 virus, thereby offering important insights into effective therapeutic strategies. Here, we establish a lung and macrophage co-culture system derived from human pluripotent stem cells (hPSCs), modeling the host-pathogen interaction in SARS-CoV-2 infection. We find that both classically polarized macrophages (M1) and alternatively polarized macrophages (M2) have inhibitory effects on SARS-CoV-2 infection. However, M1 and non-activated (M0) macrophages, but not M2 macrophages, significantly up-regulate inflammatory factors upon viral infection. Moreover, M1 macrophages suppress the growth and enhance apoptosis of lung cells. Inhibition of viral entry using an ACE2 blocking antibody substantially enhances the activity of M2 macrophages. Our studies indicate differential immune response patterns in distinct macrophage phenotypes, which could lead to a range of COVID-19 disease severity.

Suggested Citation

  • Qizhou Lian & Kui Zhang & Zhao Zhang & Fuyu Duan & Liyan Guo & Weiren Luo & Bobo Wing-Yee Mok & Abhimanyu Thakur & Xiaoshan Ke & Pedram Motallebnejad & Vlad Nicolaescu & Jonathan Chen & Chui Yan Ma & , 2022. "Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29731-5
    DOI: 10.1038/s41467-022-29731-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29731-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29731-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elisa Gomez Perdiguero & Kay Klapproth & Christian Schulz & Katrin Busch & Emanuele Azzoni & Lucile Crozet & Hannah Garner & Celine Trouillet & Marella F. de Bruijn & Frederic Geissmann & Hans-Reimer , 2015. "Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors," Nature, Nature, vol. 518(7540), pages 547-551, February.
    2. Thomas A. Wynn & Ajay Chawla & Jeffrey W. Pollard, 2013. "Macrophage biology in development, homeostasis and disease," Nature, Nature, vol. 496(7446), pages 445-455, April.
    3. Lindsey W. Plasschaert & Rapolas Žilionis & Rayman Choo-Wing & Virginia Savova & Judith Knehr & Guglielmo Roma & Allon M. Klein & Aron B. Jaffe, 2018. "A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte," Nature, Nature, vol. 560(7718), pages 377-381, August.
    4. Kyle J. Travaglini & Ahmad N. Nabhan & Lolita Penland & Rahul Sinha & Astrid Gillich & Rene V. Sit & Stephen Chang & Stephanie D. Conley & Yasuo Mori & Jun Seita & Gerald J. Berry & Joseph B. Shrager , 2020. "A molecular cell atlas of the human lung from single-cell RNA sequencing," Nature, Nature, vol. 587(7835), pages 619-625, November.
    5. Zhilei Bian & Yandong Gong & Tao Huang & Christopher Z. W. Lee & Lihong Bian & Zhijie Bai & Hui Shi & Yang Zeng & Chen Liu & Jian He & Jie Zhou & Xianlong Li & Zongcheng Li & Yanli Ni & Chunyu Ma & Le, 2020. "Deciphering human macrophage development at single-cell resolution," Nature, Nature, vol. 582(7813), pages 571-576, June.
    6. Wenhui Li & Michael J. Moore & Natalya Vasilieva & Jianhua Sui & Swee Kee Wong & Michael A. Berne & Mohan Somasundaran & John L. Sullivan & Katherine Luzuriaga & Thomas C. Greenough & Hyeryun Choe & M, 2003. "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus," Nature, Nature, vol. 426(6965), pages 450-454, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jake R. Thomas & Anna Appios & Emily F. Calderbank & Nagisa Yoshida & Xiaohui Zhao & Russell S. Hamilton & Ashley Moffett & Andrew Sharkey & Elisa Laurenti & Courtney W. Hanna & Naomi McGovern, 2023. "Primitive haematopoiesis in the human placenta gives rise to macrophages with epigenetically silenced HLA-DR," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Leila R. Martins & Lina Sieverling & Michelle Michelhans & Chiara Schiller & Cihan Erkut & Thomas G. P. Grünewald & Sergio Triana & Stefan Fröhling & Lars Velten & Hanno Glimm & Claudia Scholl, 2024. "Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Dongsheng Chen & Jian Sun & Jiacheng Zhu & Xiangning Ding & Tianming Lan & Xiran Wang & Weiying Wu & Zhihua Ou & Linnan Zhu & Peiwen Ding & Haoyu Wang & Lihua Luo & Rong Xiang & Xiaoling Wang & Jiayin, 2021. "Single cell atlas for 11 non-model mammals, reptiles and birds," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Yuanyuan Chen & Reka Toth & Sara Chocarro & Dieter Weichenhan & Joschka Hey & Pavlo Lutsik & Stefan Sawall & Georgios T. Stathopoulos & Christoph Plass & Rocio Sotillo, 2022. "Club cells employ regeneration mechanisms during lung tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Behrooz Darbani, 2020. "The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues," IJERPH, MDPI, vol. 17(10), pages 1-8, May.
    6. Qiang Zhang & Sai Ma & Zhengzhi Liu & Bohan Zhu & Zirui Zhou & Gaoshan Li & J. Javier Meana & Javier González-Maeso & Chang Lu, 2023. "Droplet-based bisulfite sequencing for high-throughput profiling of single-cell DNA methylomes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Indrikis A. Krams & Priit Jõers & Severi Luoto & Giedrius Trakimas & Vilnis Lietuvietis & Ronalds Krams & Irena Kaminska & Markus J. Rantala & Tatjana Krama, 2021. "The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries," IJERPH, MDPI, vol. 18(3), pages 1-10, January.
    8. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Reza Mirzazadeh & Zaneta Andrusivova & Ludvig Larsson & Phillip T. Newton & Leire Alonso Galicia & Xesús M. Abalo & Mahtab Avijgan & Linda Kvastad & Alexandre Denadai-Souza & Nathalie Stakenborg & Ale, 2023. "Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Diego Fernández-Lázaro & Jerónimo J. González-Bernal & Nerea Sánchez-Serrano & Lourdes Jiménez Navascués & Ana Ascaso-del-Río & Juan Mielgo-Ayuso, 2020. "Physical Exercise as a Multimodal Tool for COVID-19: Could It Be Used as a Preventive Strategy?," IJERPH, MDPI, vol. 17(22), pages 1-13, November.
    11. Liang Yong & Yafen Yu & Bao Li & Huiyao Ge & Qi Zhen & Yiwen Mao & Yanxia Yu & Lu Cao & Ruixue Zhang & Zhuo Li & Yirui Wang & Wencheng Fan & Chang Zhang & Daiyue Wang & Sihan Luo & Yuanming Bai & Shir, 2022. "Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Marysia Wrona & Damian Skrypnik, 2022. "New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection—Systematic Review," IJERPH, MDPI, vol. 19(20), pages 1-10, October.
    13. Heewon Cho & Haw-Young Kwon & Amit Sharma & Sun Hyeok Lee & Xiao Liu & Naoki Miyamoto & Jong-Jin Kim & Sin-Hyeog Im & Nam-Young Kang & Young-Tae Chang, 2022. "Visualizing inflammation with an M1 macrophage selective probe via GLUT1 as the gating target," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Shixuan Liu & Camille Ezran & Michael F. Z. Wang & Zhengda Li & Kyle Awayan & Jonathan Z. Long & Iwijn De Vlaminck & Sheng Wang & Jacques Epelbaum & Christin S. Kuo & Jérémy Terrien & Mark A. Krasnow , 2024. "An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    16. Zhoufeng Wang & Zhe Li & Kun Zhou & Chengdi Wang & Lili Jiang & Li Zhang & Ying Yang & Wenxin Luo & Wenliang Qiao & Gang Wang & Yinyun Ni & Shuiping Dai & Tingting Guo & Guiyi Ji & Minjie Xu & Yiying , 2021. "Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. Christopher J. Hanley & Sara Waise & Matthew J. Ellis & Maria A. Lopez & Wai Y. Pun & Julian Taylor & Rachel Parker & Lucy M. Kimbley & Serena J. Chee & Emily C. Shaw & Jonathan West & Aiman Alzetani , 2023. "Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Eran Mick & Alexandra Tsitsiklis & Natasha Spottiswoode & Saharai Caldera & Paula Hayakawa Serpa & Angela M. Detweiler & Norma Neff & Angela Oliveira Pisco & Lucy M. Li & Hanna Retallack & Kalani Ratn, 2022. "Upper airway gene expression shows a more robust adaptive immune response to SARS-CoV-2 in children," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Nagla A. El-Shitany & Manal El-Hamamsy & Ahlam A. Alahmadi & Basma G. Eid & Thikryat Neamatallah & Haifa S. Almukadi & Rana A. Arab & Khadija A. Faddladdeen & Khayria A. Al-Sulami & Safia M. Bahshwan , 2021. "The Impact of ABO Blood Grouping on COVID-19 Vulnerability and Seriousness: A Retrospective Cross-Sectional Controlled Study among the Arab Community," IJERPH, MDPI, vol. 18(1), pages 1-19, January.
    20. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29731-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.