IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29315-3.html
   My bibliography  Save this article

The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana

Author

Listed:
  • Zenglin Li

    (Faculty of Biology, University of Freiburg)

  • David J. Sheerin

    (Faculty of Biology, University of Freiburg)

  • Edda Roepenack-Lahaye

    (University of Tübingen)

  • Mark Stahl

    (University of Tübingen)

  • Andreas Hiltbrunner

    (Faculty of Biology, University of Freiburg
    University of Freiburg)

Abstract

Seed germination is a critical step in the life cycle of plants controlled by the phytohormones abscisic acid (ABA) and gibberellin (GA), and by phytochromes, an important class of photoreceptors in plants. Here we show that light-dependent germination is enhanced in mutants deficient in the AP2/ERF transcription factors ERF55 and ERF58. Light-activated phytochromes repress ERF55/ERF58 expression and directly bind ERF55/ERF58 to displace them from the promoter of PIF1 and SOM, genes encoding transcriptional regulators that prevent the completion of germination. The same mechanism controls the expression of genes that encode ABA or GA metabolic enzymes to decrease levels of ABA and possibly increase levels of GA. Interestingly, ERF55 and ERF58 are themselves under transcriptional control of ABA and GA, suggesting that they are part of a self-reinforcing signalling loop which controls the completion of germination. Overall, we identified a role of ERF55/ERF58 in phytochrome-mediated regulation of germination completion.

Suggested Citation

  • Zenglin Li & David J. Sheerin & Edda Roepenack-Lahaye & Mark Stahl & Andreas Hiltbrunner, 2022. "The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29315-3
    DOI: 10.1038/s41467-022-29315-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29315-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29315-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Debbie Winter & Ben Vinegar & Hardeep Nahal & Ron Ammar & Greg V Wilson & Nicholas J Provart, 2007. "An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets," PLOS ONE, Public Library of Science, vol. 2(8), pages 1-12, August.
    2. Martina Legris & Yetkin Çaka Ince & Christian Fankhauser, 2019. "Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    3. Beatrix Enderle & David J. Sheerin & Inyup Paik & Praveen Kumar Kathare & Philipp Schwenk & Cornelia Klose & Maximilian H. Ulbrich & Enamul Huq & Andreas Hiltbrunner, 2017. "PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanhee Kim & Yongmin Kwon & Jaehoon Jeong & Minji Kang & Ga Seul Lee & Jeong Hee Moon & Hyo-Jun Lee & Youn-Il Park & Giltsu Choi, 2023. "Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yetkin Çaka Ince & Johanna Krahmer & Anne-Sophie Fiorucci & Martine Trevisan & Vinicius Costa Galvão & Leonore Wigger & Sylvain Pradervand & Laetitia Fouillen & Pierre Delft & Manon Genva & Sebastien , 2022. "A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Sarah Guiziou & Cassandra J. Maranas & Jonah C. Chu & Jennifer L. Nemhauser, 2023. "An integrase toolbox to record gene-expression during plant development," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Urszula Piskurewicz & Maria Sentandreu & Mayumi Iwasaki & Gaëtan Glauser & Luis Lopez-Molina, 2023. "The Arabidopsis endosperm is a temperature-sensing tissue that implements seed thermoinhibition through phyB," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Weixiao Yuan Wahlgren & Elin Claesson & Iida Tuure & Sergio Trillo-Muyo & Szabolcs Bódizs & Janne A. Ihalainen & Heikki Takala & Sebastian Westenhoff, 2022. "Structural mechanism of signal transduction in a phytochrome histidine kinase," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Juan Du & Keunhwa Kim & Meng Chen, 2024. "Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Giacomo Salvadori & Veronica Macaluso & Giulia Pellicci & Lorenzo Cupellini & Giovanni Granucci & Benedetta Mennucci, 2022. "Protein control of photochemistry and transient intermediates in phytochromes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ruth Jean Ae Kim & De Fan & Jiangman He & Keunhwa Kim & Juan Du & Meng Chen, 2024. "Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29315-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.