IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29187-7.html
   My bibliography  Save this article

Structural basis of R-loop recognition by the S9.6 monoclonal antibody

Author

Listed:
  • Charles Bou-Nader

    (National Institute of Diabetes and Digestive and Kidney Diseases)

  • Ankur Bothra

    (National Institute of Allergy and Infectious Diseases)

  • David N. Garboczi

    (Research Technologies Branch, National Institute of Allergy and Infectious Diseases)

  • Stephen H. Leppla

    (National Institute of Allergy and Infectious Diseases)

  • Jinwei Zhang

    (National Institute of Diabetes and Digestive and Kidney Diseases)

Abstract

R-loops are ubiquitous, dynamic nucleic-acid structures that play fundamental roles in DNA replication and repair, chromatin and transcription regulation, as well as telomere maintenance. The DNA-RNA hybrid–specific S9.6 monoclonal antibody is widely used to map R-loops. Here, we report crystal structures of a S9.6 antigen-binding fragment (Fab) free and bound to a 13-bp hybrid duplex. We demonstrate that S9.6 exhibits robust selectivity in binding hybrids over double-stranded (ds) RNA and in categorically rejecting dsDNA. S9.6 asymmetrically recognizes a compact epitope of two consecutive RNA nucleotides via their 2′-hydroxyl groups and six consecutive DNA nucleotides via their backbone phosphate and deoxyribose groups. Recognition is mediated principally by aromatic and basic residues of the S9.6 heavy chain, which closely track the curvature of the hybrid minor groove. These findings reveal the molecular basis for S9.6 recognition of R-loops, detail its binding specificity, identify a new hybrid-recognition strategy, and provide a framework for S9.6 protein engineering.

Suggested Citation

  • Charles Bou-Nader & Ankur Bothra & David N. Garboczi & Stephen H. Leppla & Jinwei Zhang, 2022. "Structural basis of R-loop recognition by the S9.6 monoclonal antibody," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29187-7
    DOI: 10.1038/s41467-022-29187-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29187-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29187-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marianna Feretzaki & Michaela Pospisilova & Rita Valador Fernandes & Thomas Lunardi & Lumir Krejci & Joachim Lingner, 2020. "RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops," Nature, Nature, vol. 587(7833), pages 303-308, November.
    2. Iris V. Hood & Jackson M. Gordon & Charles Bou-Nader & Frances E. Henderson & Soheila Bahmanjah & Jinwei Zhang, 2019. "Crystal structure of an adenovirus virus-associated RNA," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Deepak Koirala & Yaming Shao & Yelena Koldobskaya & James R. Fuller & Andrew M. Watkins & Sandip A. Shelke & Evgeny V. Pilipenko & Rhiju Das & Phoebe A. Rice & Joseph A. Piccirilli, 2019. "A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Dmitry G. Vassylyev & Marina N. Vassylyeva & Jinwei Zhang & Murali Palangat & Irina Artsimovitch & Robert Landick, 2007. "Structural basis for substrate loading in bacterial RNA polymerase," Nature, Nature, vol. 448(7150), pages 163-168, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Bharadwaj Sharma & Muhammad Khairul Ramlee & Joel Kosmin & Martin R. Higgs & Amy Wolstenholme & George E. Ronson & Dylan Jones & Daniel Ebner & Noor Shamkhi & David Sims & Paul W. G. Wijnhove, 2023. "C16orf72/HAPSTR1/TAPR1 functions with BRCA1/Senataxin to modulate replication-associated R-loops and confer resistance to PARP disruption," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Weifeng Zhang & Zhuo Yang & Wenjie Wang & Qianwen Sun, 2024. "Primase promotes the competition between transcription and replication on the same template strand resulting in DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Zsolt Karányi & Ágnes Mosolygó-L & Orsolya Feró & Adrienn Horváth & Beáta Boros-Oláh & Éva Nagy & Szabolcs Hetey & Imre Holb & Henrik Mihály Szaker & Márton Miskei & Tibor Csorba & Lóránt Székvölgyi, 2022. "NODULIN HOMEOBOX is required for heterochromatin homeostasis in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Chung & Bert M. Verheijen & Zoe Navapanich & Eric G. McGann & Sarah Shemtov & Guan-Ju Lai & Payal Arora & Atif Towheed & Suraiya Haroon & Agnes Holczbauer & Sharon Chang & Zarko Manojlovic & St, 2023. "Evolutionary conservation of the fidelity of transcription," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Meng Xu & Dulmi Senanayaka & Rongwei Zhao & Tafadzwa Chigumira & Astha Tripathi & Jason Tones & Rachel M. Lackner & Anne R. Wondisford & Laurel N. Moneysmith & Alexander Hirschi & Sara Craig & Sahar A, 2024. "TERRA-LSD1 phase separation promotes R-loop formation for telomere maintenance in ALT cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Krishna C. Suddala & Janghyun Yoo & Lixin Fan & Xiaobing Zuo & Yun-Xing Wang & Hoi Sung Chung & Jinwei Zhang, 2023. "Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Chia-Yu Guh & Hong-Jhih Shen & Liv WeiChien Chen & Pei-Chen Chiu & I-Hsin Liao & Chen-Chia Lo & Yunfei Chen & Yu-Hung Hsieh & Ting-Chia Chang & Chien-Ping Yen & Yi-Yun Chen & Tom Wei-Wu Chen & Liuh-Yo, 2022. "XPF activates break-induced telomere synthesis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Anastasiia Chaban & Leonid Minakhin & Ekaterina Goldobina & Brain Bae & Yue Hao & Sergei Borukhov & Leena Putzeys & Maarten Boon & Florian Kabinger & Rob Lavigne & Kira S. Makarova & Eugene V. Koonin , 2024. "Tail-tape-fused virion and non-virion RNA polymerases of a thermophilic virus with an extremely long tail," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Juntaek Oh & Zelin Shan & Shuichi Hoshika & Jun Xu & Jenny Chong & Steven A. Benner & Dmitry Lyumkis & Dong Wang, 2023. "A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Juntaek Oh & Michiko Kimoto & Haoqing Xu & Jenny Chong & Ichiro Hirao & Dong Wang, 2023. "Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Lin-Tai Da & Fátima Pardo Avila & Dong Wang & Xuhui Huang, 2013. "A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-9, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29187-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.