IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28976-4.html
   My bibliography  Save this article

Norway spruce postglacial recolonization of Fennoscandia

Author

Listed:
  • Kevin Nota

    (Uppsala University)

  • Jonatan Klaminder

    (Umeå University)

  • Pascal Milesi

    (Uppsala University
    Scilifelab)

  • Richard Bindler

    (Umeå University)

  • Alessandro Nobile

    (Uppsala University)

  • Tamara Steijn

    (Uppsala University
    Umeå University)

  • Stefan Bertilsson

    (Uppsala University
    Swedish University of Agricultural Sciences)

  • Brita Svensson

    (Uppsala University)

  • Shun K. Hirota

    (Tohoku University)

  • Ayumi Matsuo

    (Tohoku University)

  • Urban Gunnarsson

    (Swedish Environmental Protection Agency)

  • Heikki Seppä

    (University of Helsinki)

  • Minna M. Väliranta

    (University of Helsinki)

  • Barbara Wohlfarth

    (Stockholm University, and Bolin Centre for Climate Research)

  • Yoshihisa Suyama

    (Tohoku University)

  • Laura Parducci

    (Uppsala University
    Sapienza University of Rome)

Abstract

Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 ± 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.

Suggested Citation

  • Kevin Nota & Jonatan Klaminder & Pascal Milesi & Richard Bindler & Alessandro Nobile & Tamara Steijn & Stefan Bertilsson & Brita Svensson & Shun K. Hirota & Ayumi Matsuo & Urban Gunnarsson & Heikki Se, 2022. "Norway spruce postglacial recolonization of Fennoscandia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28976-4
    DOI: 10.1038/s41467-022-28976-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28976-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28976-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Björn Nystedt & Nathaniel R. Street & Anna Wetterbom & Andrea Zuccolo & Yao-Cheng Lin & Douglas G. Scofield & Francesco Vezzi & Nicolas Delhomme & Stefania Giacomello & Andrey Alexeyenko & Riccardo Vi, 2013. "The Norway spruce genome sequence and conifer genome evolution," Nature, Nature, vol. 497(7451), pages 579-584, May.
    2. Simon Brewer & Thomas Giesecke & Basil A. S. Davis & Walter Finsinger & Steffen Wolters & Heather Binney & Jacques-Louis de Beaulieu & Ralph Fyfe & Graciela Gil-Romera & Norbert Kühl & Petr Kuneš & Mi, 2017. "Late-glacial and Holocene European pollen data," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 921-928, November.
    3. Evan J. Gowan & Xu Zhang & Sara Khosravi & Alessio Rovere & Paolo Stocchi & Anna L. C. Hughes & Richard Gyllencreutz & Jan Mangerud & John-Inge Svendsen & Gerrit Lohmann, 2021. "A new global ice sheet reconstruction for the past 80 000 years," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    2. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    3. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    6. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    7. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    8. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    9. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    10. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    11. Andre Krumel Portella & Afroditi Papantoni & Catherine Paquet & Spencer Moore & Keri Shiels Rosch & Stewart Mostofsky & Richard S Lee & Kimberly R Smith & Robert Levitan & Patricia Pelufo Silveira & S, 2020. "Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    12. Lindsay Fernández-Rhodes & Jennifer R Malinowski & Yujie Wang & Ran Tao & Nathan Pankratz & Janina M Jeff & Sachiko Yoneyama & Cara L Carty & V Wendy Setiawan & Loic Le Marchand & Christopher Haiman &, 2018. "The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic ," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    13. Peña-Malavera Andrea & Bruno Cecilia & Balzarini Monica & Fernandez Elmer, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 1-12, August.
    14. Chi-Chun Liu & David Witonsky & Anna Gosling & Ju Hyeon Lee & Harald Ringbauer & Richard Hagan & Nisha Patel & Raphaela Stahl & John Novembre & Mark Aldenderfer & Christina Warinner & Anna Di Rienzo &, 2022. "Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    16. Zhao Huaqing & Rebbeck Timothy R. & Mitra Nandita, 2012. "Analyzing Genetic Association Studies with an Extended Propensity Score Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-24, October.
    17. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    18. Emile R Chimusa & Michelle Daya & Marlo Möller & Raj Ramesar & Brenna M Henn & Paul D van Helden & Nicola J Mulder & Eileen G Hoal, 2013. "Determining Ancestry Proportions in Complex Admixture Scenarios in South Africa Using a Novel Proxy Ancestry Selection Method," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-14, September.
    19. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Bryc, Katarzyna & Bryc, Wlodek & Silverstein, Jack W., 2013. "Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 34-43.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28976-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.