IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28417-2.html
   My bibliography  Save this article

Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate

Author

Listed:
  • Shian Liu

    (Weill Cornell Medical College of Cornell University)

  • Navid Paknejad

    (Memorial Sloan Kettering Cancer Center)

  • Lan Zhu

    (Arizona State University)

  • Yasuyuki Kihara

    (Sanford Burnham Prebys Medical Discovery Institute)

  • Manisha Ray

    (Sanford Burnham Prebys Medical Discovery Institute)

  • Jerold Chun

    (Sanford Burnham Prebys Medical Discovery Institute)

  • Wei Liu

    (Arizona State University)

  • Richard K. Hite

    (Memorial Sloan Kettering Cancer Center)

  • Xin-Yun Huang

    (Weill Cornell Medical College of Cornell University)

Abstract

Lysophospholipids are bioactive lipids and can signal through G-protein-coupled receptors (GPCRs). The best studied lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). The mechanisms of lysophospholipid recognition by an active GPCR, and the activations of lysophospholipid GPCR–G-protein complexes remain unclear. Here we report single-particle cryo-EM structures of human S1P receptor 1 (S1P1) and heterotrimeric Gi complexes formed with bound S1P or the multiple sclerosis (MS) treatment drug Siponimod, as well as human LPA receptor 1 (LPA1) and Gi complexes in the presence of LPA. Our structural and functional data provide insights into how LPA and S1P adopt different conformations to interact with their cognate GPCRs, the selectivity of the homologous lipid GPCRs for S1P versus LPA, and the different activation mechanisms of these GPCRs by LPA and S1P. Our studies also reveal specific optimization strategies to improve the MS-treating S1P1-targeting drugs.

Suggested Citation

  • Shian Liu & Navid Paknejad & Lan Zhu & Yasuyuki Kihara & Manisha Ray & Jerold Chun & Wei Liu & Richard K. Hite & Xin-Yun Huang, 2022. "Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28417-2
    DOI: 10.1038/s41467-022-28417-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28417-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28417-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minfei Su & Jinan Wang & Guoqing Xiang & Hung Nguyen Do & Joshua Levitz & Yinglong Miao & Xin-Yun Huang, 2023. "Structural basis of agonist specificity of α1A-adrenergic receptor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xuan Zhang & Yujing Wang & Shreyas Supekar & Xu Cao & Jingkai Zhou & Jessica Dang & Siqi Chen & Laura Jenkins & Sara Marsango & Xiu Li & Guibing Liu & Graeme Milligan & Mingye Feng & Hao Fan & Weimin , 2023. "Pro-phagocytic function and structural basis of GPR84 signaling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Navid Paknejad & Vinay Sapuru & Richard K. Hite, 2023. "Structural titration reveals Ca2+-dependent conformational landscape of the IP3 receptor," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Hiroaki Akasaka & Tatsuki Tanaka & Fumiya K. Sano & Yuma Matsuzaki & Wataru Shihoya & Osamu Nureki, 2022. "Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Jiale Liang & Asuka Inoue & Tatsuya Ikuta & Ruixue Xia & Na Wang & Kouki Kawakami & Zhenmei Xu & Yu Qian & Xinyan Zhu & Anqi Zhang & Changyou Guo & Zhiwei Huang & Yuanzheng He, 2023. "Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Tamaki Izume & Ryo Kawahara & Akiharu Uwamizu & Luying Chen & Shun Yaginuma & Jumpei Omi & Hiroki Kawana & Fengjue Hou & Fumiya K. Sano & Tatsuki Tanaka & Kazuhiro Kobayashi & Hiroyuki H. Okamoto & Yo, 2024. "Structural basis for lysophosphatidylserine recognition by GPR34," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28417-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.