IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28260-5.html
   My bibliography  Save this article

Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis

Author

Listed:
  • Woong Hee Lee

    (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)
    Seoul National University)

  • Man Ho Han

    (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)
    Korea University)

  • Young-Jin Ko

    (Clean Energy Research Center, Korea Institute of Science and Technology (KIST))

  • Byoung Koun Min

    (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)
    Graduate School of Energy and Environment (KU-KIST Green School), Korea University)

  • Keun Hwa Chae

    (Advanced Analysis Center, Korea Institute of Science and Technology (KIST))

  • Hyung-Suk Oh

    (Clean Energy Research Center, Korea Institute of Science and Technology (KIST)
    Division of Energy and Environmental Technology, KIST school, Korea University of Science and Technology
    Sungkyunkwan University)

Abstract

Computational calculations and experimental studies reveal that the CoOOH phase and the intermediate-spin (IS) state are the key factors for realizing efficient Co-based electrocatalysts for the oxygen evolution reaction (OER). However, according to thermodynamics, general cobalt oxide converts to the CoO2 phase under OER condition, retarding the OER kinetics. Herein, we demonstrate a simple and scalable strategy to fabricate electrodes with maintaining Fe-CoOOH phase and an IS state under the OER. The changes of phase and spin states were uncovered by combining in-situ/operando X-ray based absorption spectroscopy and Raman spectroscopy. Electrochemical reconstruction of chalcogenide treated Co foam affords a highly enlarged active surface that conferred excellent catalytic activity and stability in a large-scale water electrolyzer. Our findings are meaningful in that the calculated results were experimentally verified through the operando analyses. It also proposes a new strategy for electrode fabrication and confirms the importance of real active phases and spin states under a particular reaction condition.

Suggested Citation

  • Woong Hee Lee & Man Ho Han & Young-Jin Ko & Byoung Koun Min & Keun Hwa Chae & Hyung-Suk Oh, 2022. "Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28260-5
    DOI: 10.1038/s41467-022-28260-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28260-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28260-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingxing Zhang & Baohua Zhang & Guoqiang Zhao & Jianmei Wang & Danqing Liu & Yaping Chen & Lixue Xia & Mingxia Gao & Yongfeng Liu & Wenping Sun & Hongge Pan, 2022. "Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Siran Xu & Sihua Feng & Yue Yu & Dongping Xue & Mengli Liu & Chao Wang & Kaiyue Zhao & Bingjun Xu & Jia-Nan Zhang, 2024. "Dual-site segmentally synergistic catalysis mechanism: boosting CoFeSx nanocluster for sustainable water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Shu-Pei Zeng & Hang Shi & Tian-Yi Dai & Yang Liu & Zi Wen & Gao-Feng Han & Tong-Hui Wang & Wei Zhang & Xing-You Lang & Wei-Tao Zheng & Qing Jiang, 2023. "Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28260-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.