IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28183-1.html
   My bibliography  Save this article

Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving

Author

Listed:
  • Liang Shen

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education
    Huazhong University of Science and Technology)

  • Ruihuan Cheng

    (Huazhong University of Science and Technology)

  • Ming Yi

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education
    Huazhong University of Science and Technology)

  • Wei-Song Hung

    (National Taiwan University of Science and Technology
    Chung Yuan Christian University)

  • Susilo Japip

    (National University of Singapore)

  • Lian Tian

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education
    Huazhong University of Science and Technology)

  • Xuan Zhang

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education
    Huazhong University of Science and Technology)

  • Shudong Jiang

    (Anhui University)

  • Song Li

    (Huazhong University of Science and Technology)

  • Yan Wang

    (Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education
    Huazhong University of Science and Technology)

Abstract

Thin-film composite membranes formed by conventional interfacial polymerization generally suffer from the depth heterogeneity of the polyamide layer, i.e., nonuniformly distributed free volume pores, leading to the inefficient permselectivity. Here, we demonstrate a facile and versatile approach to tune the nanoscale homogeneity of polyamide-based thin-film composite membranes via inorganic salt-mediated interfacial polymerization process. Molecular dynamics simulations and various characterization techniques elucidate in detail the underlying molecular mechanism by which the salt addition confines and regulates the diffusion of amine monomers to the water-oil interface and thus tunes the nanoscale homogeneity of the polyamide layer. The resulting thin-film composite membranes with thin, smooth, dense, and structurally homogeneous polyamide layers demonstrate a permeance increment of ~20–435% and/or solute rejection enhancement of ~10–170% as well as improved antifouling property for efficient reverse/forward osmosis and nanofiltration separations. This work sheds light on the tunability of the polyamide layer homogeneity via salt-regulated interfacial polymerization process.

Suggested Citation

  • Liang Shen & Ruihuan Cheng & Ming Yi & Wei-Song Hung & Susilo Japip & Lian Tian & Xuan Zhang & Shudong Jiang & Song Li & Yan Wang, 2022. "Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28183-1
    DOI: 10.1038/s41467-022-28183-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28183-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28183-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangjin Zhao & Haiqi Gao & Zhou Qu & Hongwei Fan & Hong Meng, 2023. "Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Huawen Peng & Kaicheng Yu & Xufei Liu & Jiapeng Li & Xiangguo Hu & Qiang Zhao, 2023. "Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xiang Li & Weibin Lin & Vivekanand Sharma & Radoslaw Gorecki & Munmun Ghosh & Basem A. Moosa & Sandra Aristizabal & Shanshan Hong & Niveen M. Khashab & Suzana P. Nunes, 2023. "Polycage membranes for precise molecular separation and catalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28183-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.