IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27405-2.html
   My bibliography  Save this article

Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures

Author

Listed:
  • Jianyu Zhang

    (Beihang University)

  • Mingfeng Chen

    (Tsinghua University)

  • Jilei Chen

    (Beihang University
    Southern University of Science and Technology)

  • Kei Yamamoto

    (Advanced Science Research Center, Japan Atomic Energy Agency
    RIKEN Center for Emergent Matter Science, Wako)

  • Hanchen Wang

    (Beihang University)

  • Mohammad Hamdi

    (Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL))

  • Yuanwei Sun

    (Peking University)

  • Kai Wagner

    (University of Basel)

  • Wenqing He

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Yu Zhang

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Ji Ma

    (Tsinghua University)

  • Peng Gao

    (Peking University)

  • Xiufeng Han

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Dapeng Yu

    (Southern University of Science and Technology)

  • Patrick Maletinsky

    (University of Basel)

  • Jean-Philippe Ansermet

    (Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL))

  • Sadamichi Maekawa

    (RIKEN Center for Emergent Matter Science, Wako
    University of Chinese Academy of Sciences)

  • Dirk Grundler

    (Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL)
    Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne (EPFL))

  • Ce-Wen Nan

    (Tsinghua University)

  • Haiming Yu

    (Beihang University)

Abstract

Magnons can transfer information in metals and insulators without Joule heating, and therefore are promising for low-power computation. The on-chip magnonics however suffers from high losses due to limited magnon decay length. In metallic thin films, it is typically on the tens of micrometre length scale. Here, we demonstrate an ultra-long magnon decay length of up to one millimetre in multiferroic/ferromagnetic BiFeO3(BFO)/La0.67Sr0.33MnO3(LSMO) heterostructures at room temperature. This decay length is attributed to a magnon-phonon hybridization and is more than two orders of magnitude longer than that of bare metallic LSMO. The long-distance modes have high group velocities of 2.5 km s−1 as detected by time-resolved Brillouin light scattering. Numerical simulations suggest that magnetoelastic coupling via the BFO/LSMO interface hybridizes phonons in BFO with magnons in LSMO to form magnon-polarons. Our results provide a solution to the long-standing issue on magnon decay lengths in metallic magnets and advance the bourgeoning field of hybrid magnonics.

Suggested Citation

  • Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27405-2
    DOI: 10.1038/s41467-021-27405-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27405-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27405-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. Kajiwara & K. Harii & S. Takahashi & J. Ohe & K. Uchida & M. Mizuguchi & H. Umezawa & H. Kawai & K. Ando & K. Takanashi & S. Maekawa & E. Saitoh, 2010. "Transmission of electrical signals by spin-wave interconversion in a magnetic insulator," Nature, Nature, vol. 464(7286), pages 262-266, March.
    2. S. O. Demokritov & V. E. Demidov & O. Dzyapko & G. A. Melkov & A. A. Serga & B. Hillebrands & A. N. Slavin, 2006. "Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping," Nature, Nature, vol. 443(7110), pages 430-433, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ellen Fogh & Mithilesh Nayak & Oleksandr Prokhnenko & Maciej Bartkowiak & Koji Munakata & Jian-Rui Soh & Alexandra A. Turrini & Mohamed E. Zayed & Ekaterina Pomjakushina & Hiroshi Kageyama & Hiroyuki , 2024. "Field-induced bound-state condensation and spin-nematic phase in SrCu2(BO3)2 revealed by neutron scattering up to 25.9 T," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Song Bao & Zhao-Long Gu & Yanyan Shangguan & Zhentao Huang & Junbo Liao & Xiaoxue Zhao & Bo Zhang & Zhao-Yang Dong & Wei Wang & Ryoichi Kajimoto & Mitsutaka Nakamura & Tom Fennell & Shun-Li Yu & Jian-, 2023. "Direct observation of topological magnon polarons in a multiferroic material," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Man Yang & Liang Sun & Yulun Zeng & Jun Cheng & Kang He & Xi Yang & Ziqiang Wang & Longqian Yu & Heng Niu & Tongzhou Ji & Gong Chen & Bingfeng Miao & Xiangrong Wang & Haifeng Ding, 2024. "Highly efficient field-free switching of perpendicular yttrium iron garnet with collinear spin current," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Korbinian Baumgaertl & Dirk Grundler, 2023. "Reversal of nanomagnets by propagating magnons in ferrimagnetic yttrium iron garnet enabling nonvolatile magnon memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Kun Xu & Ting Lin & Yiheng Rao & Ziqiang Wang & Qinghui Yang & Huaiwu Zhang & Jing Zhu, 2022. "Direct investigation of the atomic structure and decreased magnetism of antiphase boundaries in garnet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27405-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.