IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27342-0.html
   My bibliography  Save this article

Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling

Author

Listed:
  • Willow Coyote-Maestas

    (Molecular Biology & Biophysics, University of Minnesota)

  • David Nedrud

    (Molecular Biology & Biophysics, University of Minnesota)

  • Antonio Suma

    (Temple University)

  • Yungui He

    (Cell Biology & Development, University of Minnesota)

  • Kenneth A. Matreyek

    (Case Western Reserve University School of Medicine)

  • Douglas M. Fowler

    (University of Washington
    University of Washington)

  • Vincenzo Carnevale

    (Temple University)

  • Chad L. Myers

    (University of Minnesota)

  • Daniel Schmidt

    (Cell Biology & Development, University of Minnesota)

Abstract

Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.

Suggested Citation

  • Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27342-0
    DOI: 10.1038/s41467-021-27342-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27342-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27342-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard N. McLaughlin Jr & Frank J. Poelwijk & Arjun Raman & Walraj S. Gosal & Rama Ranganathan, 2012. "The spatial architecture of protein function and adaptation," Nature, Nature, vol. 491(7422), pages 138-142, November.
    2. Stephen B. Long & Xiao Tao & Ernest B. Campbell & Roderick MacKinnon, 2007. "Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment," Nature, Nature, vol. 450(7168), pages 376-382, November.
    3. Robert A. Langan & Scott E. Boyken & Andrew H. Ng & Jennifer A. Samson & Galen Dods & Alexandra M. Westbrook & Taylor H. Nguyen & Marc J. Lajoie & Zibo Chen & Stephanie Berger & Vikram Khipple Mulliga, 2019. "De novo design of bioactive protein switches," Nature, Nature, vol. 572(7768), pages 205-210, August.
    4. Willow Coyote-Maestas & Yungui He & Chad L. Myers & Daniel Schmidt, 2019. "Domain insertion permissibility-guided engineering of allostery in ion channels," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    5. Jay H. Choi & Abigail H. Laurent & Vincent J. Hilser & Marc Ostermeier, 2015. "Design of protein switches based on an ensemble model of allostery," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    6. Scott B. Hansen & Xiao Tao & Roderick MacKinnon, 2011. "Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2," Nature, Nature, vol. 477(7365), pages 495-498, September.
    7. Nobuyasu Koga & Rie Tatsumi-Koga & Gaohua Liu & Rong Xiao & Thomas B. Acton & Gaetano T. Montelione & David Baker, 2012. "Principles for designing ideal protein structures," Nature, Nature, vol. 491(7423), pages 222-227, November.
    8. Sneha Vishwanath & Alexandre G de Brevern & Narayanaswamy Srinivasan, 2018. "Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    9. Elizabeth A. Shank & Ciro Cecconi & Jesse W. Dill & Susan Marqusee & Carlos Bustamante, 2010. "The folding cooperativity of a protein is controlled by its chain topology," Nature, Nature, vol. 465(7298), pages 637-640, June.
    10. Andrew W. Senior & Richard Evans & John Jumper & James Kirkpatrick & Laurent Sifre & Tim Green & Chongli Qin & Augustin Žídek & Alexander W. R. Nelson & Alex Bridgland & Hugo Penedones & Stig Petersen, 2020. "Improved protein structure prediction using potentials from deep learning," Nature, Nature, vol. 577(7792), pages 706-710, January.
    11. Yi I. Wu & Daniel Frey & Oana I. Lungu & Angelika Jaehrig & Ilme Schlichting & Brian Kuhlman & Klaus M. Hahn, 2009. "A genetically encoded photoactivatable Rac controls the motility of living cells," Nature, Nature, vol. 461(7260), pages 104-108, September.
    12. Nate Yoder & Craig Yoshioka & Eric Gouaux, 2018. "Gating mechanisms of acid-sensing ion channels," Nature, Nature, vol. 555(7696), pages 397-401, March.
    13. Dana C. Nadler & Stacy-Anne Morgan & Avi Flamholz & Kaitlyn E. Kortright & David F. Savage, 2016. "Rapid construction of metabolite biosensors using domain-insertion profiling," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    14. Anselm Levskaya & Orion D. Weiner & Wendell A. Lim & Christopher A. Voigt, 2009. "Spatiotemporal control of cell signalling using a light-switchable protein interaction," Nature, Nature, vol. 461(7266), pages 997-1001, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyuan Zhu & Harold M. McNamara & Jared E. Toettcher, 2023. "Light-switchable transcription factors obtained by direct screening in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Marcos Matamoros & Xue Wen Ng & Joshua B. Brettmann & David W. Piston & Colin G. Nichols, 2023. "Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Camden M. Driggers & Yi-Ying Kuo & Phillip Zhu & Assmaa ElSheikh & Show-Ling Shyng, 2024. "Structure of an open KATP channel reveals tandem PIP2 binding sites mediating the Kir6.2 and SUR1 regulatory interface," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhihong Xiao & Jinyin Zha & Xu Yang & Tingting Huang & Shuxin Huang & Qi Liu & Xiaozheng Wang & Jie Zhong & Jianting Zheng & Rubing Liang & Zixin Deng & Jian Zhang & Shuangjun Lin & Shaobo Dai, 2024. "A three-level regulatory mechanism of the aldo-keto reductase subfamily AKR12D," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    9. Alistair Bailey & Andy van Hateren & Tim Elliott & Jörn M Werner, 2014. "Two Polymorphisms Facilitate Differences in Plasticity between Two Chicken Major Histocompatibility Complex Class I Proteins," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    10. Zhong Guo & Oleh Smutok & Wayne A. Johnston & Patricia Walden & Jacobus P. J. Ungerer & Thomas S. Peat & Janet Newman & Jake Parker & Tom Nebl & Caryn Hepburn & Artem Melman & Richard J. Suderman & Ev, 2021. "Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Takayuki Yasunaga & Johannes Wiegel & Max D. Bergen & Martin Helmstädter & Daniel Epting & Andrea Paolini & Özgün Çiçek & Gerald Radziwill & Christina Engel & Thomas Brox & Olaf Ronneberger & Peter Wa, 2022. "Microridge-like structures anchor motile cilia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2022. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Papers 2201.07168, arXiv.org.
    13. Ahmed Abdul Quadeer & David Morales-Jimenez & Matthew R McKay, 2018. "Co-evolution networks of HIV/HCV are modular with direct association to structure and function," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-29, September.
    14. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Kirill D. Nadezhdin & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Jin Wang & Ning Xue & Wenjia Pan & Ran Tu & Shixin Li & Yue Zhang & Yufeng Mao & Ye Liu & Haijiao Cheng & Yanmei Guo & Wei Yuan & Xiaomeng Ni & Meng Wang, 2023. "Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Michael B. Sheets & Nathan Tague & Mary J. Dunlop, 2023. "An optogenetic toolkit for light-inducible antibiotic resistance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    20. Yasmine S. Zubi & Kosuke Seki & Ying Li & Andrew C. Hunt & Bingqing Liu & Benoît Roux & Michael C. Jewett & Jared C. Lewis, 2022. "Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27342-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.