IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26883-8.html
   My bibliography  Save this article

Aborting meiosis allows recombination in sterile diploid yeast hybrids

Author

Listed:
  • Simone Mozzachiodi

    (Université Côte d’Azur, CNRS, INSERM, IRCAN
    Meiogenix, 38, rue Servan)

  • Lorenzo Tattini

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Agnes Llored

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Agurtzane Irizar

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Neža Škofljanc

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Melania D’Angiolo

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Matteo De Chiara

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Benjamin P. Barré

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Jia-Xing Yue

    (Université Côte d’Azur, CNRS, INSERM, IRCAN
    Sun Yat-sen University Cancer Center)

  • Angela Lutazi

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

  • Sophie Loeillet

    (Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University)

  • Raphaelle Laureau

    (Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University
    Hammer Health Sciences Center, Columbia University Medical Center)

  • Souhir Marsit

    (Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University
    SPO, Université Montpellier, INRAE, Montpellier SupAgro
    Université du Québec à Rimouski, Rimouski)

  • Simon Stenberg

    (University of Gothenburg)

  • Benoit Albaud

    (Institut Curie, ICGEX NGS Platform)

  • Karl Persson

    (University of Gothenburg)

  • Jean-Luc Legras

    (SPO, Université Montpellier, INRAE, Montpellier SupAgro)

  • Sylvie Dequin

    (SPO, Université Montpellier, INRAE, Montpellier SupAgro)

  • Jonas Warringer

    (University of Gothenburg)

  • Alain Nicolas

    (Université Côte d’Azur, CNRS, INSERM, IRCAN
    Meiogenix, 38, rue Servan
    Institut Curie, Centre de Recherche, CNRS-UMR3244, PSL Research University)

  • Gianni Liti

    (Université Côte d’Azur, CNRS, INSERM, IRCAN)

Abstract

Hybrids between diverged lineages contain novel genetic combinations but an impaired meiosis often makes them evolutionary dead ends. Here, we explore to what extent an aborted meiosis followed by a return-to-growth (RTG) promotes recombination across a panel of 20 Saccharomyces cerevisiae and S. paradoxus diploid hybrids with different genomic structures and levels of sterility. Genome analyses of 275 clones reveal that RTG promotes recombination and generates extensive regions of loss-of-heterozygosity in sterile hybrids with either a defective meiosis or a heavily rearranged karyotype, whereas RTG recombination is reduced by high sequence divergence between parental subgenomes. The RTG recombination preferentially arises in regions with low local heterozygosity and near meiotic recombination hotspots. The loss-of-heterozygosity has a profound impact on sexual and asexual fitness, and enables genetic mapping of phenotypic differences in sterile lineages where linkage analysis would fail. We propose that RTG gives sterile yeast hybrids access to a natural route for genome recombination and adaptation.

Suggested Citation

  • Simone Mozzachiodi & Lorenzo Tattini & Agnes Llored & Agurtzane Irizar & Neža Škofljanc & Melania D’Angiolo & Matteo De Chiara & Benjamin P. Barré & Jia-Xing Yue & Angela Lutazi & Sophie Loeillet & Ra, 2021. "Aborting meiosis allows recombination in sterile diploid yeast hybrids," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26883-8
    DOI: 10.1038/s41467-021-26883-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26883-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26883-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johan Hallin & Kaspar Märtens & Alexander I. Young & Martin Zackrisson & Francisco Salinas & Leopold Parts & Jonas Warringer & Gianni Liti, 2016. "Powerful decomposition of complex traits in a diploid model," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    2. Meleah A. Hickman & Guisheng Zeng & Anja Forche & Matthew P. Hirakawa & Darren Abbey & Benjamin D. Harrison & Yan-Ming Wang & Ching-hua Su & Richard J. Bennett & Yue Wang & Judith Berman, 2013. "The ‘obligate diploid’ Candida albicans forms mating-competent haploids," Nature, Nature, vol. 494(7435), pages 55-59, February.
    3. G. Fischer & S. A. James & I. N. Roberts & S. G. Oliver & E. J. Louis, 2000. "Chromosomal evolution in Saccharomyces," Nature, Nature, vol. 405(6785), pages 451-454, May.
    4. Jean-François Flot & Boris Hespeels & Xiang Li & Benjamin Noel & Irina Arkhipova & Etienne G. J. Danchin & Andreas Hejnol & Bernard Henrissat & Romain Koszul & Jean-Marc Aury & Valérie Barbe & Roxane-, 2013. "Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga," Nature, Nature, vol. 500(7463), pages 453-457, August.
    5. Jackson Peter & Matteo De Chiara & Anne Friedrich & Jia-Xing Yue & David Pflieger & Anders Bergström & Anastasie Sigwalt & Benjamin Barre & Kelle Freel & Agnès Llored & Corinne Cruaud & Karine Labadie, 2018. "Genome evolution across 1,011 Saccharomyces cerevisiae isolates," Nature, Nature, vol. 556(7701), pages 339-344, April.
    6. Hervé Marie-Nelly & Martial Marbouty & Axel Cournac & Jean-François Flot & Gianni Liti & Dante Poggi Parodi & Sylvie Syan & Nancy Guillén & Antoine Margeot & Christophe Zimmer & Romain Koszul, 2014. "High-quality genome (re)assembly using chromosomal contact data," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    7. Eugenio Mancera & Richard Bourgon & Alessandro Brozzi & Wolfgang Huber & Lars M. Steinmetz, 2008. "High-resolution mapping of meiotic crossovers and non-crossovers in yeast," Nature, Nature, vol. 454(7203), pages 479-485, July.
    8. Masel, Joanna & Lyttle, David N., 2011. "The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species," Theoretical Population Biology, Elsevier, vol. 80(4), pages 317-322.
    9. Matthew Z. Anderson & Gregory J. Thomson & Matthew P. Hirakawa & Richard J. Bennett, 2019. "A ‘parameiosis’ drives depolyploidization and homologous recombination in Candida albicans," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Miguel C. Coelho & Ricardo M. Pinto & Andrew W. Murray, 2019. "Heterozygous mutations cause genetic instability in a yeast model of cancer evolution," Nature, Nature, vol. 566(7743), pages 275-278, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Mozzachiodi & Kristoffer Krogerus & Brian Gibson & Alain Nicolas & Gianni Liti, 2022. "Unlocking the functional potential of polyploid yeasts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Peris & Emily J. Ubbelohde & Meihua Christina Kuang & Jacek Kominek & Quinn K. Langdon & Marie Adams & Justin A. Koshalek & Amanda Beth Hulfachor & Dana A. Opulente & David J. Hall & Katie Hyma , 2023. "Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    3. Danesh Moradigaravand & Martin Palm & Anne Farewell & Ville Mustonen & Jonas Warringer & Leopold Parts, 2018. "Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-17, December.
    4. Simone Mozzachiodi & Kristoffer Krogerus & Brian Gibson & Alain Nicolas & Gianni Liti, 2022. "Unlocking the functional potential of polyploid yeasts," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Stuart D. Desjardins & James Simmonds & Inna Guterman & Kostya Kanyuka & Amanda J. Burridge & Andrew J. Tock & Eugenio Sanchez-Moran & F. Chris H. Franklin & Ian R. Henderson & Keith J. Edwards & Cris, 2022. "FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. T. Brunoir & C. Mulligan & A. Sistiaga & K. M. Vuu & P. M. Shih & S. S. O’Reilly & R. E. Summons & D. A. Gold, 2023. "Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Dariusz R. Kutyna & Cristobal A. Onetto & Thomas C. Williams & Hugh D. Goold & Ian T. Paulsen & Isak S. Pretorius & Daniel L. Johnson & Anthony R. Borneman, 2022. "Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Mischan Vali-Pour & Solip Park & Jose Espinosa-Carrasco & Daniel Ortiz-Martínez & Ben Lehner & Fran Supek, 2022. "The impact of rare germline variants on human somatic mutation processes," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Fernando Rodriguez & Irina A. Yushenova & Daniel DiCorpo & Irina R. Arkhipova, 2022. "Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Emilien Nicolas & Paul Simion & Marc Guérineau & Matthieu Terwagne & Mathilde Colinet & Julie Virgo & Maxime Lingurski & Anaïs Boutsen & Marc Dieu & Bernard Hallet & Karine Doninck, 2023. "Horizontal acquisition of a DNA ligase improves DNA damage tolerance in eukaryotes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Qichao Lian & Victor Solier & Birgit Walkemeier & Stéphanie Durand & Bruno Huettel & Korbinian Schneeberger & Raphael Mercier, 2022. "The megabase-scale crossover landscape is largely independent of sequence divergence," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Robert Schöpflin & Uirá Souto Melo & Hossein Moeinzadeh & David Heller & Verena Laupert & Jakob Hertzberg & Manuel Holtgrewe & Nico Alavi & Marius-Konstantin Klever & Julius Jungnitsch & Emel Comak & , 2022. "Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Takeshi Matsui & Martin N. Mullis & Kevin R. Roy & Joseph J. Hale & Rachel Schell & Sasha F. Levy & Ian M. Ehrenreich, 2022. "The interplay of additivity, dominance, and epistasis on fitness in a diploid yeast cross," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Daniel Sultanov & Andreas Hochwagen, 2022. "Varying strength of selection contributes to the intragenomic diversity of rRNA genes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26883-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.