IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25364-2.html
   My bibliography  Save this article

Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor

Author

Listed:
  • Yue Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shimeng Guo

    (Nanjing University of Chinese Medicine
    Chinese Academy of Sciences)

  • Youwen Zhuang

    (Chinese Academy of Sciences)

  • Ying Yun

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Peiyu Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xinheng He

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jia Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wanchao Yin

    (Chinese Academy of Sciences)

  • H. Eric Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Nanjing University of Chinese Medicine
    ShanghaiTech University)

  • Xin Xie

    (University of Chinese Academy of Sciences
    Nanjing University of Chinese Medicine
    Chinese Academy of Sciences
    ShanghaiTech University)

  • Yi Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Ghrelin, also called “the hunger hormone”, is a gastric peptide hormone that regulates food intake, body weight, as well as taste sensation, reward, cognition, learning and memory. One unique feature of ghrelin is its acylation, primarily with an octanoic acid, which is essential for its binding and activation of the ghrelin receptor, a G protein-coupled receptor. The multifaceted roles of ghrelin make ghrelin receptor a highly attractive drug target for growth retardation, obesity, and metabolic disorders. Here we present two cryo-electron microscopy structures of Gq-coupled ghrelin receptor bound to ghrelin and a synthetic agonist, GHRP-6. Analysis of these two structures reveals a unique binding pocket for the octanoyl group, which guides the correct positioning of the peptide to initiate the receptor activation. Together with mutational and functional data, our structures define the rules for recognition of the acylated peptide hormone and activation of ghrelin receptor, and provide structural templates to facilitate drug design targeting ghrelin receptor.

Suggested Citation

  • Yue Wang & Shimeng Guo & Youwen Zhuang & Ying Yun & Peiyu Xu & Xinheng He & Jia Guo & Wanchao Yin & H. Eric Xu & Xin Xie & Yi Jiang, 2021. "Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25364-2
    DOI: 10.1038/s41467-021-25364-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25364-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25364-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dohyun Im & Jun-ichi Kishikawa & Yuki Shiimura & Hiromi Hisano & Akane Ito & Yoko Fujita-Fujiharu & Yukihiko Sugita & Takeshi Noda & Takayuki Kato & Hidetsugu Asada & So Iwata, 2023. "Structural insights into the agonists binding and receptor selectivity of human histamine H4 receptor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jia Duan & Dan-Dan Shen & Tingting Zhao & Shimeng Guo & Xinheng He & Wanchao Yin & Peiyu Xu & Yujie Ji & Li-Nan Chen & Jinyu Liu & Huibing Zhang & Qiufeng Liu & Yi Shi & Xi Cheng & Hualiang Jiang & H., 2022. "Molecular basis for allosteric agonism and G protein subtype selectivity of galanin receptors," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Chongzhao You & Yumu Zhang & Peiyu Xu & Sijie Huang & Wanchao Yin & H. Eric Xu & Yi Jiang, 2022. "Structural insights into the peptide selectivity and activation of human neuromedin U receptors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xinyan Zhu & Yu Qian & Xiaowan Li & Zhenmei Xu & Ruixue Xia & Na Wang & Jiale Liang & Han Yin & Anqi Zhang & Changyou Guo & Guangfu Wang & Yuanzheng He, 2022. "Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25364-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.