IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24559-x.html
   My bibliography  Save this article

Transparent origami glass

Author

Listed:
  • Yang Xu

    (Zhejiang University)

  • Ye Li

    (Zhejiang University)

  • Ning Zheng

    (Zhejiang University)

  • Qian Zhao

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Tao Xie

    (Zhejiang University
    ZJU-Hangzhou Global Scientific and Technological Innovation Center)

Abstract

The art of origami has emerged as an engineering tool with ever increasing potential, but the technique is typically limited to soft and deformable materials. Glass is indispensable in many applications, but its processing options are limited by its brittle nature and the requirement to achieve optical transparency. We report a strategy that allows making three dimensional transparent glass with origami techniques. Our process starts from a dynamic covalent polymer matrix with homogeneously dispersed silica nanoparticles. Particle cavitation and dynamic bond exchange offer two complementary plasticity mechanisms that allow the nanocomposite to be permanently folded into designable geometries. Further pyrolysis and sintering convert it into transparent three dimensional glass. Our method expands the scope of glass shaping and potentially opens up its utilities in unexplored territories.

Suggested Citation

  • Yang Xu & Ye Li & Ning Zheng & Qian Zhao & Tao Xie, 2021. "Transparent origami glass," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24559-x
    DOI: 10.1038/s41467-021-24559-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24559-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24559-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyong Li & Yanwen Jia & Ke Duan & Ran Xiao & Jingyu Qiao & Shuyu Liang & Shixiang Wang & Juzheng Chen & Hao Wu & Yang Lu & Xiewen Wen, 2024. "One-photon three-dimensional printed fused silica glass with sub-micron features," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Wu, Yaobin & Huang, Jiazhou & Chen, Xiangfeng, 2024. "The information value of logistics platforms in a freight matching market," European Journal of Operational Research, Elsevier, vol. 312(1), pages 227-239.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24559-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.