IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19535-w.html
   My bibliography  Save this article

Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer

Author

Listed:
  • Danila Amoroso

    (Consiglio Nazionale delle Ricerche CNR-SPIN, c/o Università degli Studi ‘G. D’Annunzio’)

  • Paolo Barone

    (Consiglio Nazionale delle Ricerche CNR-SPIN, c/o Università degli Studi ‘G. D’Annunzio’)

  • Silvia Picozzi

    (Consiglio Nazionale delle Ricerche CNR-SPIN, c/o Università degli Studi ‘G. D’Annunzio’)

Abstract

Topological spin structures, such as magnetic skyrmions, hold great promises for data storage applications, thanks to their inherent stability. In most cases, skyrmions are stabilized by magnetic fields in non-centrosymmetric systems displaying the chiral Dzyaloshinskii-Moriya exchange interaction, while spontaneous skyrmion lattices have been reported in centrosymmetric itinerant magnets with long-range interactions. Here, a spontaneous anti-biskyrmion lattice with unique topology and chirality is predicted in the monolayer of a semiconducting and centrosymmetric metal halide, NiI2. Our first-principles and Monte Carlo simulations reveal that the anisotropies of the short-range symmetric exchange, when combined with magnetic frustration, can lead to an emergent chiral interaction that is responsible for the predicted topological spin structures. The proposed mechanism finds a prototypical manifestation in two-dimensional magnets, thus broadening the class of materials that can host spontaneous skyrmionic states.

Suggested Citation

  • Danila Amoroso & Paolo Barone & Silvia Picozzi, 2020. "Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19535-w
    DOI: 10.1038/s41467-020-19535-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19535-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19535-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longju Yu & Hong Jian Zhao & Peng Chen & Laurent Bellaiche & Yanming Ma, 2023. "The anti-symmetric and anisotropic symmetric exchange interactions between electric dipoles in hafnia," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Mara Gutzeit & André Kubetzka & Soumyajyoti Haldar & Henning Pralow & Moritz A. Goerzen & Roland Wiesendanger & Stefan Heinze & Kirsten Bergmann, 2022. "Nano-scale collinear multi-Q states driven by higher-order interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19535-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.