IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19448-8.html
   My bibliography  Save this article

Designing accurate emulators for scientific processes using calibration-driven deep models

Author

Listed:
  • Jayaraman J. Thiagarajan

    (Center for Applied Scientific Computing)

  • Bindya Venkatesh

    (Arizona State University)

  • Rushil Anirudh

    (Center for Applied Scientific Computing)

  • Peer-Timo Bremer

    (Center for Applied Scientific Computing)

  • Jim Gaffney

    (Center for Applied Scientific Computing)

  • Gemma Anderson

    (Center for Applied Scientific Computing)

  • Brian Spears

    (Center for Applied Scientific Computing)

Abstract

Predictive models that accurately emulate complex scientific processes can achieve speed-ups over numerical simulators or experiments and at the same time provide surrogates for improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern machine learning methods to build data-driven emulators. In this work, we study an often overlooked, yet important, problem of choosing loss functions while designing such emulators. Popular choices such as the mean squared error or the mean absolute error are based on a symmetric noise assumption and can be unsuitable for heterogeneous data or asymmetric noise distributions. We propose Learn-by-Calibrating, a novel deep learning approach based on interval calibration for designing emulators that can effectively recover the inherent noise structure without any explicit priors. Using a large suite of use-cases, we demonstrate the efficacy of our approach in providing high-quality emulators, when compared to widely-adopted loss function choices, even in small-data regimes.

Suggested Citation

  • Jayaraman J. Thiagarajan & Bindya Venkatesh & Rushil Anirudh & Peer-Timo Bremer & Jim Gaffney & Gemma Anderson & Brian Spears, 2020. "Designing accurate emulators for scientific processes using calibration-driven deep models," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19448-8
    DOI: 10.1038/s41467-020-19448-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19448-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19448-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander J. Bogensperger & Yann Fabel & Joachim Ferstl, 2022. "Accelerating Energy-Economic Simulation Models via Machine Learning-Based Emulation and Time Series Aggregation," Energies, MDPI, vol. 15(3), pages 1-42, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19448-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.