IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18374-z.html
   My bibliography  Save this article

High-speed III-V nanowire photodetector monolithically integrated on Si

Author

Listed:
  • Svenja Mauthe

    (IBM Research Europe)

  • Yannick Baumgartner

    (IBM Research Europe)

  • Marilyne Sousa

    (IBM Research Europe)

  • Qian Ding

    (ETH Zurich)

  • Marta D. Rossell

    (IBM Research Europe
    Empa, Swiss Federal Laboratories for Materials Science and Technology)

  • Andreas Schenk

    (ETH Zurich)

  • Lukas Czornomaz

    (IBM Research Europe)

  • Kirsten E. Moselund

    (IBM Research Europe)

Abstract

Direct epitaxial growth of III-Vs on silicon for optical emitters and detectors is an elusive goal. Nanowires enable the local integration of high-quality III-V material, but advanced devices are hampered by their high-aspect ratio vertical geometry. Here, we demonstrate the in-plane monolithic integration of an InGaAs nanostructure p-i-n photodetector on Si. Using free space coupling, photodetectors demonstrate a spectral response from 1200-1700 nm. The 60 nm thin devices, with footprints as low as ~0.06 μm2, provide an ultra-low capacitance which is key for high-speed operation. We demonstrate high-speed optical data reception with a nanostructure photodetector at 32 Gb s−1, enabled by a 3 dB bandwidth exceeding ~25 GHz. When operated as light emitting diode, the p-i-n devices emit around 1600 nm, paving the way for future fully integrated optical links.

Suggested Citation

  • Svenja Mauthe & Yannick Baumgartner & Marilyne Sousa & Qian Ding & Marta D. Rossell & Andreas Schenk & Lukas Czornomaz & Kirsten E. Moselund, 2020. "High-speed III-V nanowire photodetector monolithically integrated on Si," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18374-z
    DOI: 10.1038/s41467-020-18374-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18374-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18374-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengyan Wen & Preksha Tiwari & Svenja Mauthe & Heinz Schmid & Marilyne Sousa & Markus Scherrer & Michael Baumann & Bertold Ian Bitachon & Juerg Leuthold & Bernd Gotsmann & Kirsten E. Moselund, 2022. "Waveguide coupled III-V photodiodes monolithically integrated on Si," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Sandra Benter & Adam Jönsson & Jonas Johansson & Lin Zhu & Evangelos Golias & Lars-Erik Wernersson & Anders Mikkelsen, 2023. "Geometric control of diffusing elements on InAs semiconductor surfaces via metal contacts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Fengjing Liu & Xinming Zhuang & Mingxu Wang & Dongqing Qi & Shengpan Dong & SenPo Yip & Yanxue Yin & Jie Zhang & Zixu Sa & Kepeng Song & Longbing He & Yang Tan & You Meng & Johnny C. Ho & Lei Liao & F, 2023. "Lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18374-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.