IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18284-0.html
   My bibliography  Save this article

Modulating electrolyte structure for ultralow temperature aqueous zinc batteries

Author

Listed:
  • Qiu Zhang

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

  • Yilin Ma

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

  • Yong Lu

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

  • Lin Li

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

  • Fang Wan

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

  • Kai Zhang

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

  • Jun Chen

    (Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University)

Abstract

Rechargeable aqueous batteries are an up-and-coming system for potential large-scale energy storage due to their high safety and low cost. However, the freeze of aqueous electrolyte limits the low-temperature operation of such batteries. Here, we report the breakage of original hydrogen-bond network in ZnCl2 solution by modulating electrolyte structure, and thus suppressing the freeze of water and depressing the solid-liquid transition temperature of the aqueous electrolyte from 0 to –114 °C. This ZnCl2-based low-temperature electrolyte renders polyaniline||Zn batteries available to operate in an ultra-wide temperature range from –90 to +60 °C, which covers the earth surface temperature in record. Such polyaniline||Zn batteries are robust at –70 °C (84.9 mA h g−1) and stable during over 2000 cycles with ~100% capacity retention. This work significantly provides an effective strategy to propel low-temperature aqueous batteries via tuning the electrolyte structure and widens the application range of temperature adaptation of aqueous batteries.

Suggested Citation

  • Qiu Zhang & Yilin Ma & Yong Lu & Lin Li & Fang Wan & Kai Zhang & Jun Chen, 2020. "Modulating electrolyte structure for ultralow temperature aqueous zinc batteries," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18284-0
    DOI: 10.1038/s41467-020-18284-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18284-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18284-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Wei Wang & Shan Chen & Xuelong Liao & Rong Huang & Fengmei Wang & Jialei Chen & Yaxin Wang & Fei Wang & Huan Wang, 2023. "Regulating interfacial reaction through electrolyte chemistry enables gradient interphase for low-temperature zinc metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Qichen Wang & Qingguo Feng & Yongpeng Lei & Shuaihao Tang & Liang Xu & Yu Xiong & Guozhao Fang & Yuchao Wang & Peiyao Yang & Jingjing Liu & Wei Liu & Xiang Xiong, 2022. "Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Feifei Wang & Jipeng Zhang & Haotian Lu & Hanbing Zhu & Zihui Chen & Lu Wang & Jinyang Yu & Conghui You & Wenhao Li & Jianwei Song & Zhe Weng & Chunpeng Yang & Quan-Hong Yang, 2023. "Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Meijia Qiu & Peng Sun & Kai Han & Zhenjiang Pang & Jun Du & Jinliang Li & Jian Chen & Zhong Lin Wang & Wenjie Mai, 2023. "Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xiangyong Zhang & Hua Wei & Shizhen Li & Baohui Ren & Jingjing Jiang & Guangmeng Qu & Haiming Lv & Guojin Liang & Guangming Chen & Chunyi Zhi & Hongfei Li & Zhuoxin Liu, 2023. "Manipulating coordination environment for a high-voltage aqueous copper-chlorine battery," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Mochou Liao & Xiao Ji & Yongjie Cao & Jie Xu & Xuan Qiu & Yihua Xie & Fei Wang & Chunsheng Wang & Yongyao Xia, 2022. "Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Guojin Liang & Bochun Liang & Ao Chen & Jiaxiong Zhu & Qing Li & Zhaodong Huang & Xinliang Li & Ying Wang & Xiaoqi Wang & Bo Xiong & Xu Jin & Shengchi Bai & Jun Fan & Chunyi Zhi, 2023. "Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Guanjie Li & Zihan Zhao & Shilin Zhang & Liang Sun & Mingnan Li & Jodie A. Yuwono & Jianfeng Mao & Junnan Hao & Jitraporn (Pimm) Vongsvivut & Lidan Xing & Chun-Xia Zhao & Zaiping Guo, 2023. "A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18284-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.