IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18164-7.html
   My bibliography  Save this article

Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C

Author

Listed:
  • Alyssa G. Kent

    (Cornell University)

  • Albert C. Vill

    (Cornell University)

  • Qiaojuan Shi

    (Cornell University)

  • Michael J. Satlin

    (Weill Cornell Medicine)

  • Ilana Lauren Brito

    (Cornell University)

Abstract

The gut microbiome harbors a ‘silent reservoir’ of antibiotic resistance (AR) genes that is thought to contribute to the emergence of multidrug-resistant pathogens through horizontal gene transfer (HGT). To counteract the spread of AR, it is paramount to know which organisms harbor mobile AR genes and which organisms engage in HGT. Despite methods that characterize the overall abundance of AR genes in the gut, technological limitations of short-read sequencing have precluded linking bacterial taxa to specific mobile genetic elements (MGEs) encoding AR genes. Here, we apply Hi-C, a high-throughput, culture-independent method, to surveil the bacterial carriage of MGEs. We compare two healthy individuals with seven neutropenic patients undergoing hematopoietic stem cell transplantation, who receive multiple courses of antibiotics, and are acutely vulnerable to the threat of multidrug-resistant infections. We find distinct networks of HGT across individuals, though AR and mobile genes are associated with more diverse taxa within the neutropenic patients than the healthy subjects. Our data further suggest that HGT occurs frequently over a several-week period in both cohorts. Whereas most efforts to understand the spread of AR genes have focused on pathogenic species, our findings shed light on the role of the human gut microbiome in this process.

Suggested Citation

  • Alyssa G. Kent & Albert C. Vill & Qiaojuan Shi & Michael J. Satlin & Ilana Lauren Brito, 2020. "Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18164-7
    DOI: 10.1038/s41467-020-18164-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18164-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18164-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Munk & Christian Brinch & Frederik Duus Møller & Thomas N. Petersen & Rene S. Hendriksen & Anne Mette Seyfarth & Jette S. Kjeldgaard & Christina Aaby Svendsen & Bram Bunnik & Fanny Berglund & , 2022. "Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Samuel C. Forster & Junyan Liu & Nitin Kumar & Emily L. Gulliver & Jodee A. Gould & Alejandra Escobar-Zepeda & Tapoka Mkandawire & Lindsay J. Pike & Yan Shao & Mark D. Stares & Hilary P. Browne & B. A, 2022. "Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yuxuan Du & Jed A. Fuhrman & Fengzhu Sun, 2023. "ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yuxuan Du & Fengzhu Sun, 2023. "MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Smitha Sukumar & Fang Wang & Carra A. Simpson & Cali E. Willet & Tracy Chew & Toby E. Hughes & Michelle R. Bockmann & Rosemarie Sadsad & F. Elizabeth Martin & Henry W. Lydecker & Gina V. Browne & Kyli, 2023. "Development of the oral resistome during the first decade of life," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Alice Risely & Arthur Newbury & Thibault Stalder & Benno I. Simmons & Eva M. Top & Angus Buckling & Dirk Sanders, 2024. "Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Kihyun Lee & Sebastien Raguideau & Kimmo Sirén & Francesco Asnicar & Fabio Cumbo & Falk Hildebrand & Nicola Segata & Chang-Jun Cha & Christopher Quince, 2023. "Population-level impacts of antibiotic usage on the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Peter J. Diebold & Matthew W. Rhee & Qiaojuan Shi & Nguyen Vinh Trung & Fayaz Umrani & Sheraz Ahmed & Vandana Kulkarni & Prasad Deshpande & Mallika Alexander & Ngo Hoa & Nicholas A. Christakis & Najee, 2023. "Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18164-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.