IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17603-9.html
   My bibliography  Save this article

On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source

Author

Listed:
  • Ravitej Uppu

    (University of Copenhagen)

  • Hans T. Eriksen

    (University of Copenhagen)

  • Henri Thyrrestrup

    (University of Copenhagen)

  • Aslı D. Uğurlu

    (University of Copenhagen)

  • Ying Wang

    (University of Copenhagen)

  • Sven Scholz

    (Ruhr-Universität Bochum)

  • Andreas D. Wieck

    (Ruhr-Universität Bochum)

  • Arne Ludwig

    (Ruhr-Universität Bochum)

  • Matthias C. Löbl

    (University of Basel)

  • Richard J. Warburton

    (University of Basel)

  • Peter Lodahl

    (University of Copenhagen)

  • Leonardo Midolo

    (University of Copenhagen)

Abstract

A deterministic source of coherent single photons is an enabling device for quantum information processing. Quantum dots in nanophotonic structures have been employed as excellent sources of single photons with the promise of scaling up towards multiple photons and emitters. It remains a challenge to implement deterministic resonant optical excitation of the quantum dot required for generating coherent single photons, since residual light from the excitation laser should be suppressed without compromising source efficiency and scalability. Here, we present a planar nanophotonic circuit that enables deterministic pulsed resonant excitation of quantum dots using two orthogonal waveguide modes for separating the laser and the emitted photons. We report a coherent and stable single-photon source that simultaneously achieves high-purity (g(2)(0) = 0.020 ± 0.005), high-indistinguishability (V = 96 ± 2%), and >80% coupling efficiency into the waveguide. Such ‘plug-and-play’ single-photon source can be integrated with on-chip optical networks implementing photonic quantum processors.

Suggested Citation

  • Ravitej Uppu & Hans T. Eriksen & Henri Thyrrestrup & Aslı D. Uğurlu & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Matthias C. Löbl & Richard J. Warburton & Peter Lodahl & Leonardo Midol, 2020. "On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17603-9
    DOI: 10.1038/s41467-020-17603-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17603-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17603-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Chanana & Hugo Larocque & Renan Moreira & Jacques Carolan & Biswarup Guha & Emerson G. Melo & Vikas Anant & Jindong Song & Dirk Englund & Daniel J. Blumenthal & Kartik Srinivasan & Marcelo Dava, 2022. "Ultra-low loss quantum photonic circuits integrated with single quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. N. Bart & C. Dangel & P. Zajac & N. Spitzer & J. Ritzmann & M. Schmidt & H. G. Babin & R. Schott & S. R. Valentin & S. Scholz & Y. Wang & R. Uppu & D. Najer & M. C. Löbl & N. Tomm & A. Javadi & N. O. , 2022. "Wafer-scale epitaxial modulation of quantum dot density," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17603-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.