IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17581-y.html
   My bibliography  Save this article

Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers

Author

Listed:
  • Wen-Ying Wu

    (National Taiwan University
    The University of Texas at Austin)

  • Min-Hui Lo

    (National Taiwan University)

  • Yoshihide Wada

    (International Institute of Applied Systems Analysis)

  • James S. Famiglietti

    (University of Saskatchewan)

  • John T. Reager

    (California Institute of Technology)

  • Pat J.-F. Yeh

    (Monash University Malaysia)

  • Agnès Ducharne

    (Sorbonne Université, CNRS, EPHE, UMR 7619 METIS)

  • Zong-Liang Yang

    (The University of Texas at Austin)

Abstract

Groundwater provides critical freshwater supply, particularly in dry regions where surface water availability is limited. Climate change impacts on GWS (groundwater storage) could affect the sustainability of freshwater resources. Here, we used a fully-coupled climate model to investigate GWS changes over seven critical aquifers identified as significantly distressed by satellite observations. We assessed the potential climate-driven impacts on GWS changes throughout the 21st century under the business-as-usual scenario (RCP8.5). Results show that the climate-driven impacts on GWS changes do not necessarily reflect the long-term trend in precipitation; instead, the trend may result from enhancement of evapotranspiration, and reduction in snowmelt, which collectively lead to divergent responses of GWS changes across different aquifers. Finally, we compare the climate-driven and anthropogenic pumping impacts. The reduction in GWS is mainly due to the combined impacts of over-pumping and climate effects; however, the contribution of pumping could easily far exceed the natural replenishment.

Suggested Citation

  • Wen-Ying Wu & Min-Hui Lo & Yoshihide Wada & James S. Famiglietti & John T. Reager & Pat J.-F. Yeh & Agnès Ducharne & Zong-Liang Yang, 2020. "Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17581-y
    DOI: 10.1038/s41467-020-17581-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17581-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17581-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahadevan, Meera & Shenoy, Ajay, 2023. "The political consequences of resource scarcity: Targeted spending in a water-stressed democracy," Journal of Public Economics, Elsevier, vol. 220(C).
    2. Sajid, Osama & Ifft, Jennifer & Ortiz-Bobea, Ariel, 2023. "The impact of extreme weather on farm finance - evidence from Kansas," 2023 Annual Meeting, July 23-25, Washington D.C. 335443, Agricultural and Applied Economics Association.
    3. Andreas Wunsch & Tanja Liesch & Stefan Broda, 2022. "Deep learning shows declining groundwater levels in Germany until 2100 due to climate change," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Roohollah Noori & Mohsen Maghrebi & Søren Jessen & Sayed M. Bateni & Essam Heggy & Saman Javadi & Mojtaba Noury & Severin Pistre & Soroush Abolfathi & Amir AghaKouchak, 2023. "Decline in Iran’s groundwater recharge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Mundetia, Nitika & Sharma, Devesh & Sharma, Aditya, 2024. "Groundwater sustainability assessment under climate change scenarios using integrated modelling approach and multi-criteria decision method," Ecological Modelling, Elsevier, vol. 487(C).
    6. Yujuan Su & Fengtian Yang & Yaoxuan Chen & Pan Zhang & Xue Zhang, 2021. "Optimization of Groundwater Exploitation in an Irrigation Area in the Arid Upper Peacock River, NW China: Implications for Sustainable Agriculture and Ecology," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    7. Kristof Dorau & Tim Mansfeldt, 2023. "Vulnerability of diked marsh ecosystems under climate change," Climatic Change, Springer, vol. 176(3), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17581-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.