IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16381-8.html
   My bibliography  Save this article

Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon

Author

Listed:
  • Kun Zhao

    (Dalian University of Technology)

  • Xiaowa Nie

    (Dalian University of Technology
    Columbia University)

  • Haozhi Wang

    (Dalian University of Technology)

  • Shuo Chen

    (Dalian University of Technology)

  • Xie Quan

    (Dalian University of Technology)

  • Hongtao Yu

    (Dalian University of Technology)

  • Wonyong Choi

    (Pohang University of Science and Technology)

  • Guanghui Zhang

    (Dalian University of Technology)

  • Bupmo Kim

    (Pohang University of Science and Technology)

  • Jingguang G. Chen

    (Columbia University)

Abstract

Efficient electroreduction of CO2 to multi-carbon products is a challenging reaction because of the high energy barriers for CO2 activation and C–C coupling, which can be tuned by designing the metal centers and coordination environments of catalysts. Here, we design single atom copper encapsulated on N-doped porous carbon (Cu-SA/NPC) catalysts for reducing CO2 to multi-carbon products. Acetone is identified as the major product with a Faradaic efficiency of 36.7% and a production rate of 336.1 μg h−1. Density functional theory (DFT) calculations reveal that the coordination of Cu with four pyrrole-N atoms is the main active site and reduces the reaction free energies required for CO2 activation and C–C coupling. The energetically favorable pathways for CH3COCH3 production from CO2 reduction are proposed and the origin of selective acetone formation on Cu-SA/NPC is clarified. This work provides insight into the rational design of efficient electrocatalysts for reducing CO2 to multi-carbon products.

Suggested Citation

  • Kun Zhao & Xiaowa Nie & Haozhi Wang & Shuo Chen & Xie Quan & Hongtao Yu & Wonyong Choi & Guanghui Zhang & Bupmo Kim & Jingguang G. Chen, 2020. "Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16381-8
    DOI: 10.1038/s41467-020-16381-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16381-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16381-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xiaozhi Su & Zhuoli Jiang & Jing Zhou & Hengjie Liu & Danni Zhou & Huishan Shang & Xingming Ni & Zheng Peng & Fan Yang & Wenxing Chen & Zeming Qi & Dingsheng Wang & Yu Wang, 2022. "Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jiajing Pei & Huishan Shang & Junjie Mao & Zhe Chen & Rui Sui & Xuejiang Zhang & Danni Zhou & Yu Wang & Fang Zhang & Wei Zhu & Tao Wang & Wenxing Chen & Zhongbin Zhuang, 2024. "A replacement strategy for regulating local environment of single-atom Co-SxN4−x catalysts to facilitate CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Cai Wang & Xiaoyu Wang & Houan Ren & Yilin Zhang & Xiaomei Zhou & Jing Wang & Qingxin Guan & Yuping Liu & Wei Li, 2023. "Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Chia-Shuo Hsu & Jiali Wang & You-Chiuan Chu & Jui-Hsien Chen & Chia-Ying Chien & Kuo-Hsin Lin & Li Duan Tsai & Hsiao-Chien Chen & Yen-Fa Liao & Nozomu Hiraoka & Yuan-Chung Cheng & Hao Ming Chen, 2023. "Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16381-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.