IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15827-3.html
   My bibliography  Save this article

Weak signal enhancement by nonlinear resonance control in a forced nano-electromechanical resonator

Author

Listed:
  • Avishek Chowdhury

    (Université Paris-Saclay, 10 Boulevard Thomas Gobert)

  • Marcel G. Clerc

    (Universidad de Chile)

  • Sylvain Barbay

    (Université Paris-Saclay, 10 Boulevard Thomas Gobert)

  • Isabelle Robert-Philip

    (Université de Montpellier, CNRS)

  • Remy Braive

    (Université Paris-Saclay, 10 Boulevard Thomas Gobert
    Université de Paris, 5 Rue Thomas Mann)

Abstract

Driven non-linear resonators can display sharp resonances or even multistable behaviours amenable to induce strong enhancements of weak signals. Such enhancements can make use of the phenomenon of vibrational resonance, whereby a weak low-frequency signal applied to a bistable resonator can be amplified by driving the non-linear oscillator with another appropriately-adjusted non-resonant high-frequency field. Here we demonstrate experimentally and theoretically a significant resonant enhancement of a weak signal by use of a vibrational force, yet in a monostable system consisting of a driven nano-electromechanical nonlinear resonator. The oscillator is subjected to a strong quasi-resonant drive and to two additional tones: a weak signal at lower frequency and a non-resonant driving at an intermediate frequency. We analyse this phenomenon in terms of coherent nonlinear resonance manipulation. Our results illustrate a general mechanism which might have applications in the fields of microwave signal amplification or sensing for instance.

Suggested Citation

  • Avishek Chowdhury & Marcel G. Clerc & Sylvain Barbay & Isabelle Robert-Philip & Remy Braive, 2020. "Weak signal enhancement by nonlinear resonance control in a forced nano-electromechanical resonator," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15827-3
    DOI: 10.1038/s41467-020-15827-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15827-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15827-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jiahao & Li, Kaiyuan & Guo, Wei & Du, Luchun, 2021. "Energetic and entropic vibrational resonance," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Xu, Pengfei & Gong, Xulu & Wang, Haotian & Li, Yiwei & Liu, Di, 2023. "A study of stochastic resonance in tri-stable generalized Langevin system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15827-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.