IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15379-6.html
   My bibliography  Save this article

Defect-implantation for the all-electrical detection of non-collinear spin-textures

Author

Listed:
  • Imara Lima Fernandes

    (Forschungszentrum Jülich and JARA)

  • Mohammed Bouhassoune

    (Forschungszentrum Jülich and JARA)

  • Samir Lounis

    (Forschungszentrum Jülich and JARA)

Abstract

The viability of past, current and future devices for information technology hinges on their sensitivity to the presence of impurities. The latter can reshape extrinsic Hall effects or the efficiency of magnetoresistance effects, essential for spintronics, and lead to resistivity anomalies, the so-called Kondo effect. Here, we demonstrate that atomic defects enable highly efficient all-electrical detection of spin-swirling textures, in particular magnetic skyrmions, which are promising bit candidates in future spintronics devices. The concomitant impurity-driven alteration of the electronic structure and magnetic non-collinearity gives rise to a new spin-mixing magnetoresistance (XMRdefect). Taking advantage of the impurities-induced amplification of the bare transport signal, which depends on their chemical nature, a defect-enhanced XMR (DXMR) is proposed. Both XMR modes are systematised for 3d and 4d transition metal defects implanted at the vicinity of skyrmions generated in PdFe bilayer deposited on Ir(111). The ineluctability of impurities in devices promotes the implementation of defect-enabled XMR modes in reading architectures with immediate implications in magnetic storage technologies.

Suggested Citation

  • Imara Lima Fernandes & Mohammed Bouhassoune & Samir Lounis, 2020. "Defect-implantation for the all-electrical detection of non-collinear spin-textures," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15379-6
    DOI: 10.1038/s41467-020-15379-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15379-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15379-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15379-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.