IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14886-w.html
   My bibliography  Save this article

Resolving dynamics and function of transient states in single enzyme molecules

Author

Listed:
  • Hugo Sanabria

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität
    Clemson University)

  • Dmitro Rodnin

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität)

  • Katherina Hemmen

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität)

  • Thomas-Otavio Peulen

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität)

  • Suren Felekyan

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität)

  • Mark R. Fleissner

    (University of California
    Avanir Pharmaceuticals Inc.)

  • Mykola Dimura

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität
    Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität)

  • Felix Koberling

    (PicoQuant GmbH)

  • Ralf Kühnemuth

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität)

  • Wayne Hubbell

    (University of California)

  • Holger Gohlke

    (Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität
    John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH)

  • Claus A. M. Seidel

    (Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität)

Abstract

We use a hybrid fluorescence spectroscopic toolkit to monitor T4 Lysozyme (T4L) in action by unraveling the kinetic and dynamic interplay of the conformational states. In particular, by combining single-molecule and ensemble multiparameter fluorescence detection, EPR spectroscopy, mutagenesis, and FRET-positioning and screening, and other biochemical and biophysical tools, we characterize three short-lived conformational states over the ns-ms timescale. The use of 33 FRET-derived distance sets, to screen available T4L structures, reveal that T4L in solution mainly adopts the known open and closed states in exchange at 4 µs. A newly found minor state, undisclosed by, at present, more than 500 crystal structures of T4L and sampled at 230 µs, may be actively involved in the product release step in catalysis. The presented fluorescence spectroscopic toolkit will likely accelerate the development of dynamic structural biology by identifying transient conformational states that are highly abundant in biology and critical in enzymatic reactions.

Suggested Citation

  • Hugo Sanabria & Dmitro Rodnin & Katherina Hemmen & Thomas-Otavio Peulen & Suren Felekyan & Mark R. Fleissner & Mykola Dimura & Felix Koberling & Ralf Kühnemuth & Wayne Hubbell & Holger Gohlke & Claus , 2020. "Resolving dynamics and function of transient states in single enzyme molecules," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14886-w
    DOI: 10.1038/s41467-020-14886-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14886-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14886-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Hartmann & Koushik Sreenivasa & Mathias Schenkel & Neharika Chamachi & Philipp Schake & Georg Krainer & Michael Schlierf, 2023. "An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14886-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.