IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14233-8.html
   My bibliography  Save this article

Anthropogenically-driven increases in the risks of summertime compound hot extremes

Author

Listed:
  • Jun Wang

    (Chinese Academy of Sciences)

  • Yang Chen

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences)

  • Simon F. B. Tett

    (The University of Edinburgh)

  • Zhongwei Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Panmao Zhai

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences)

  • Jinming Feng

    (Chinese Academy of Sciences)

  • Jiangjiang Xia

    (Chinese Academy of Sciences)

Abstract

Compared to individual hot days/nights, compound hot extremes that combine daytime and nighttime heat are more impactful. However, past and future changes in compound hot extremes as well as their underlying drivers and societal impacts remain poorly understood. Here we show that during 1960–2012, significant increases in Northern Hemisphere average frequency (~1.03 days decade−1) and intensity (~0.28 °C decade−1) of summertime compound hot extremes arise primarily from summer-mean warming. The forcing of rising greenhouse gases (GHGs) is robustly detected and largely accounts for observed trends. Observationally-constrained projections suggest an approximate eightfold increase in hemispheric-average frequency and a threefold growth in intensity of summertime compound hot extremes by 2100 (relative to 2012), given uncurbed GHG emissions. Accordingly, end-of-century population exposure to compound hot extremes is projected to be four to eight times the 2010s level, dependent on demographic and climate scenarios.

Suggested Citation

  • Jun Wang & Yang Chen & Simon F. B. Tett & Zhongwei Yan & Panmao Zhai & Jinming Feng & Jiangjiang Xia, 2020. "Anthropogenically-driven increases in the risks of summertime compound hot extremes," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14233-8
    DOI: 10.1038/s41467-019-14233-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14233-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14233-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqing Zhang & Changchun Chen & Yun Niu & Liucheng Shen & Wenyuan Wang, 2023. "The severity of heat and cold waves amplified by high relative humidity in humid subtropical basins: a case study in the Gan River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 865-898, January.
    2. Makarov, I. & Chernokulsky, A., 2023. "Impacts of climate change on the Russian economy: Ranking of regions by adaptation needs," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 145-202.
    3. Sabrina Katharina Beckmann & Michael Hiete & Michael Schneider & Christoph Beck, 2021. "Heat adaptation measures in private households: an application and adaptation of the protective action decision model," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    4. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14233-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.