IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13297-w.html
   My bibliography  Save this article

Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning

Author

Listed:
  • Dipendra Jha

    (Northwestern University)

  • Kamal Choudhary

    (National Institute of Standards and Technology)

  • Francesca Tavazza

    (National Institute of Standards and Technology)

  • Wei-keng Liao

    (Northwestern University)

  • Alok Choudhary

    (Northwestern University)

  • Carelyn Campbell

    (National Institute of Standards and Technology)

  • Ankit Agrawal

    (Northwestern University)

Abstract

The current predictive modeling techniques applied to Density Functional Theory (DFT) computations have helped accelerate the process of materials discovery by providing significantly faster methods to scan materials candidates, thereby reducing the search space for future DFT computations and experiments. However, in addition to prediction error against DFT-computed properties, such predictive models also inherit the DFT-computation discrepancies against experimentally measured properties. To address this challenge, we demonstrate that using deep transfer learning, existing large DFT-computational data sets (such as the Open Quantum Materials Database (OQMD)) can be leveraged together with other smaller DFT-computed data sets as well as available experimental observations to build robust prediction models. We build a highly accurate model for predicting formation energy of materials from their compositions; using an experimental data set of $$1,643$$1,643 observations, the proposed approach yields a mean absolute error (MAE) of $$0.07$$0.07 eV/atom, which is significantly better than existing machine learning (ML) prediction modeling based on DFT computations and is comparable to the MAE of DFT-computation itself.

Suggested Citation

  • Dipendra Jha & Kamal Choudhary & Francesca Tavazza & Wei-keng Liao & Alok Choudhary & Carelyn Campbell & Ankit Agrawal, 2019. "Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13297-w
    DOI: 10.1038/s41467-019-13297-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13297-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13297-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Vishu Gupta & Kamal Choudhary & Francesca Tavazza & Carelyn Campbell & Wei-keng Liao & Alok Choudhary & Ankit Agrawal, 2021. "Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Yuwei Mao & Hui Lin & Christina Xuan Yu & Roger Frye & Darren Beckett & Kevin Anderson & Lars Jacquemetton & Fred Carter & Zhangyuan Gao & Wei-keng Liao & Alok N. Choudhary & Kornel Ehmann & Ankit Agr, 2023. "A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 315-329, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13297-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.