IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11994-0.html
   My bibliography  Save this article

Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints

Author

Listed:
  • Joe G. Greener

    (University College London
    The Francis Crick Institute)

  • Shaun M. Kandathil

    (University College London
    The Francis Crick Institute)

  • David T. Jones

    (University College London
    The Francis Crick Institute)

Abstract

The inapplicability of amino acid covariation methods to small protein families has limited their use for structural annotation of whole genomes. Recently, deep learning has shown promise in allowing accurate residue-residue contact prediction even for shallow sequence alignments. Here we introduce DMPfold, which uses deep learning to predict inter-atomic distance bounds, the main chain hydrogen bond network, and torsion angles, which it uses to build models in an iterative fashion. DMPfold produces more accurate models than two popular methods for a test set of CASP12 domains, and works just as well for transmembrane proteins. Applied to all Pfam domains without known structures, confident models for 25% of these so-called dark families were produced in under a week on a small 200 core cluster. DMPfold provides models for 16% of human proteome UniProt entries without structures, generates accurate models with fewer than 100 sequences in some cases, and is freely available.

Suggested Citation

  • Joe G. Greener & Shaun M. Kandathil & David T. Jones, 2019. "Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11994-0
    DOI: 10.1038/s41467-019-11994-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11994-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11994-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew J McGehee & Sutanu Bhattacharya & Rahmatullah Roche & Debswapna Bhattacharya, 2020. "PolyFold: An interactive visual simulator for distance-based protein folding," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-11, December.
    2. Rahmatullah Roche & Sutanu Bhattacharya & Debswapna Bhattacharya, 2021. "Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-31, February.
    3. Yang Li & Chengxin Zhang & Eric W Bell & Wei Zheng & Xiaogen Zhou & Dong-Jun Yu & Yang Zhang, 2021. "Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    4. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11994-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.