IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11489-y.html
   My bibliography  Save this article

Programmable four-photon graph states on a silicon chip

Author

Listed:
  • Jeremy C. Adcock

    (University of Bristol, Merchant Venturers Building)

  • Caterina Vigliar

    (University of Bristol, Merchant Venturers Building)

  • Raffaele Santagati

    (University of Bristol, Merchant Venturers Building)

  • Joshua W. Silverstone

    (University of Bristol, Merchant Venturers Building)

  • Mark G. Thompson

    (University of Bristol, Merchant Venturers Building)

Abstract

Future quantum computers require a scalable architecture on a scalable technology—one that supports millions of high-performance components. Measurement-based protocols, using graph states, represent the state of the art in architectures for optical quantum computing. Silicon photonics technology offers enormous scale and proven quantum optical functionality. Here we produce and encode photonic graph states on a mass-manufactured chip, using four on-chip-generated photons. We programmably generate all types of four-photon graph state, implementing a basic measurement-based protocol, and measure high-visibility heralded interference of the chip’s four photons. We develop a model of the device and bound the dominant sources of error using Bayesian inference. The combination of measurement-based quantum computation, silicon photonics technology, and on-chip multi-pair sources will be a useful one for future scalable quantum information processing with photons.

Suggested Citation

  • Jeremy C. Adcock & Caterina Vigliar & Raffaele Santagati & Joshua W. Silverstone & Mark G. Thompson, 2019. "Programmable four-photon graph states on a silicon chip," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11489-y
    DOI: 10.1038/s41467-019-11489-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11489-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11489-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jieshan Huang & Xudong Li & Xiaojiong Chen & Chonghao Zhai & Yun Zheng & Yulin Chi & Yan Li & Qiongyi He & Qihuang Gong & Jianwei Wang, 2024. "Demonstration of hypergraph-state quantum information processing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jia-Qi Wang & Yuan-Hao Yang & Ming Li & Haiqi Zhou & Xin-Biao Xu & Ji-Zhe Zhang & Chun-Hua Dong & Guang-Can Guo & C.-L. Zou, 2022. "Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11489-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.