IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10834-5.html
   My bibliography  Save this article

Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer

Author

Listed:
  • Li Xue

    (Huazhong University of Science and Technology)

  • Qian Sun

    (Huazhong University of Science and Technology)

  • Han Zhao

    (Huazhong University of Science and Technology)

  • Xavier Rovira

    (Université de Montpellier
    University of Vic - Central University of Catalonia, C. de la Laura, 13)

  • Siyu Gai

    (Huazhong University of Science and Technology)

  • Qianwen He

    (Huazhong University of Science and Technology)

  • Jean-Philippe Pin

    (Université de Montpellier)

  • Jianfeng Liu

    (Huazhong University of Science and Technology)

  • Philippe Rondard

    (Université de Montpellier)

Abstract

G protein-coupled receptors (GPCRs) can integrate extracellular signals via allosteric interactions within dimers and higher-order oligomers. However, the structural bases of these interactions remain unclear. Here, we use the GABAB receptor heterodimer as a model as it forms large complexes in the brain. It is subjected to genetic mutations mainly affecting transmembrane 6 (TM6) and involved in human diseases. By cross-linking, we identify the transmembrane interfaces involved in GABAB1-GABAB2, as well as GABAB1-GABAB1 interactions. Our data are consistent with an oligomer made of a row of GABAB1. We bring evidence that agonist activation induces a concerted rearrangement of the various interfaces. While the GB1-GB2 interface is proposed to involve TM5 in the inactive state, cross-linking of TM6s lead to constitutive activity. These data bring insight for our understanding of the allosteric interaction between GPCRs within oligomers.

Suggested Citation

  • Li Xue & Qian Sun & Han Zhao & Xavier Rovira & Siyu Gai & Qianwen He & Jean-Philippe Pin & Jianfeng Liu & Philippe Rondard, 2019. "Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10834-5
    DOI: 10.1038/s41467-019-10834-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10834-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10834-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panpan Zhang & Masahiro Maruoka & Ryo Suzuki & Hikaru Katani & Yu Dou & Daniel M. Packwood & Hidetaka Kosako & Motomu Tanaka & Jun Suzuki, 2023. "Extracellular calcium functions as a molecular glue for transmembrane helices to activate the scramblase Xkr4," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Marie-Lise Jobin & Sana Siddig & Zsombor Koszegi & Yann Lanoiselée & Vladimir Khayenko & Titiwat Sungkaworn & Christian Werner & Kerstin Seier & Christin Misigaiski & Giovanna Mantovani & Markus Sauer, 2023. "Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Sayaka Oda & Kazuhiro Nishiyama & Yuka Furumoto & Yohei Yamaguchi & Akiyuki Nishimura & Xiaokang Tang & Yuri Kato & Takuro Numaga-Tomita & Toshiyuki Kaneko & Supachoke Mangmool & Takuya Kuroda & Reish, 2022. "Myocardial TRPC6-mediated Zn2+ influx induces beneficial positive inotropy through β-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10834-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.