IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10720-0.html
   My bibliography  Save this article

Mechanical impact of epithelial−mesenchymal transition on epithelial morphogenesis in Drosophila

Author

Listed:
  • Mélanie Gracia

    (Université de Toulouse, CNRS, UPS)

  • Sophie Theis

    (Université de Toulouse, CNRS, UPS
    Morphogénie Logiciels)

  • Amsha Proag

    (Université de Toulouse, CNRS, UPS)

  • Guillaume Gay

    (Morphogénie Logiciels)

  • Corinne Benassayag

    (Université de Toulouse, CNRS, UPS)

  • Magali Suzanne

    (Université de Toulouse, CNRS, UPS)

Abstract

Epithelial−mesenchymal transition (EMT) is an essential process both in physiological and pathological contexts. Intriguingly, EMT is often associated with tissue invagination during development; however, the impact of EMT on tissue remodeling remain unexplored. Here, we show that at the initiation of the EMT process, cells produce an apico-basal force, orthogonal to the surface of the epithelium, that constitutes an important driving force for tissue invagination in Drosophila. When EMT is ectopically induced, cells starting their delamination generate an orthogonal force and induce ectopic folding. Similarly, during mesoderm invagination, cells undergoing EMT generate an apico-basal force through the formation of apico-basal structures of myosin II. Using both laser microdissection and in silico physical modelling, we show that mesoderm invagination does not proceed if apico-basal forces are impaired, indicating that they constitute driving forces in the folding process. Altogether, these data reveal the mechanical impact of EMT on morphogenesis.

Suggested Citation

  • Mélanie Gracia & Sophie Theis & Amsha Proag & Guillaume Gay & Corinne Benassayag & Magali Suzanne, 2019. "Mechanical impact of epithelial−mesenchymal transition on epithelial morphogenesis in Drosophila," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10720-0
    DOI: 10.1038/s41467-019-10720-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10720-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10720-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurélien Villedieu & Lale Alpar & Isabelle Gaugué & Amina Joudat & François Graner & Floris Bosveld & Yohanns Bellaïche, 2023. "Homeotic compartment curvature and tension control spatiotemporal folding dynamics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Julien Fierling & Alphy John & Barthélémy Delorme & Alexandre Torzynski & Guy B. Blanchard & Claire M. Lye & Anna Popkova & Grégoire Malandain & Bénédicte Sanson & Jocelyn Étienne & Philippe Marmottan, 2022. "Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10720-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.