IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10130-2.html
   My bibliography  Save this article

Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent

Author

Listed:
  • Kim Sneppen

    (University of Copenhagen)

  • Leonie Ringrose

    (Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 22)

Abstract

Polycomb (PcG) and Trithorax (TrxG) group proteins give stable epigenetic memory of silent and active gene expression states, but also allow poised states in pluripotent cells. Here we systematically address the relationship between poised, active and silent chromatin, by integrating 73 publications on PcG/TrxG biochemistry into a mathematical model comprising 144 nucleosome modification states and 8 enzymatic reactions. Our model predicts that poised chromatin is bistable and not bivalent. Bivalent chromatin, containing opposing active and silent modifications, is present as an unstable background population in all system states, and different subtypes co-occur with active and silent chromatin. In contrast, bistability, in which the system switches frequently between stable active and silent states, occurs under a wide range of conditions at the transition between monostable active and silent system states. By proposing that bistability and not bivalency is associated with poised chromatin, this work has implications for understanding the molecular nature of pluripotency.

Suggested Citation

  • Kim Sneppen & Leonie Ringrose, 2019. "Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10130-2
    DOI: 10.1038/s41467-019-10130-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10130-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10130-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang-Yu Fu & Tao Zhu & Xinkai Zhou & Ranran Yu & Zhaohui He & Peijing Zhang & Zhigui Wu & Ming Chen & Kerstin Kaufmann & Dijun Chen, 2022. "ChIP-Hub provides an integrative platform for exploring plant regulome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Chet H. Loh & Siebe Genesen & Matteo Perino & Magnus R. Bark & Gert Jan C. Veenstra, 2021. "Loss of PRC2 subunits primes lineage choice during exit of pluripotency," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10130-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.