IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09058-4.html
   My bibliography  Save this article

Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic

Author

Listed:
  • Theresa C. Barrett

    (Princeton University
    Rutgers Robert Wood Johnson Medical School)

  • Wendy W. K. Mok

    (Princeton University
    UConn Health)

  • Allison M. Murawski

    (Princeton University
    Rutgers Robert Wood Johnson Medical School)

  • Mark P. Brynildsen

    (Princeton University
    Princeton University)

Abstract

Bacterial persisters are able to tolerate high levels of antibiotics and give rise to new populations. Persister tolerance is generally attributed to minimally active cellular processes that prevent antibiotic-induced damage, which has led to the supposition that persister offspring give rise to antibiotic-resistant mutants at comparable rates to normal cells. Using time-lapse microscopy to monitor Escherichia coli populations following ofloxacin treatment, we find that persisters filament extensively and induce impressive SOS responses before returning to a normal appearance. Further, populations derived from fluoroquinolone persisters contain significantly greater quantities of antibiotic-resistant mutants than those from untreated controls. We confirm that resistance is heritable and that the enhancement requires RecA, SOS induction, an opportunity to recover from treatment, and the involvement of error-prone DNA polymerase V (UmuDC). These findings show that fluoroquinolones damage DNA in persisters and that the ensuing SOS response accelerates the development of antibiotic resistance from these survivors.

Suggested Citation

  • Theresa C. Barrett & Wendy W. K. Mok & Allison M. Murawski & Mark P. Brynildsen, 2019. "Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09058-4
    DOI: 10.1038/s41467-019-09058-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09058-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09058-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erica J. Zheng & Ian W. Andrews & Alexandra T. Grote & Abigail L. Manson & Miguel A. Alcantar & Ashlee M. Earl & James J. Collins, 2022. "Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Alexandr Safatov & Irina Andreeva & Galina Buryak & Olesia Ohlopkova & Sergei Olkin & Larisa Puchkova & Irina Reznikova & Nadezda Solovyanova & Boris Belan & Mikhail Panchenko & Denis Simonenkov, 2020. "How Has the Hazard to Humans of Microorganisms Found in Atmospheric Aerosol in the South of Western Siberia Changed over 10 Years?," IJERPH, MDPI, vol. 17(5), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09058-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.