IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i9d10.1038_s41558-019-0555-0.html
   My bibliography  Save this article

Summer weather becomes more persistent in a 2 °C world

Author

Listed:
  • Peter Pfleiderer

    (Climate Analytics
    Potsdam Institute for Climate Impact Research
    Humboldt-Universität zu Berlin)

  • Carl-Friedrich Schleussner

    (Climate Analytics
    Potsdam Institute for Climate Impact Research
    Humboldt-Universität zu Berlin)

  • Kai Kornhuber

    (Columbia University
    University of Oxford
    National Centre for Atmospheric Science)

  • Dim Coumou

    (Potsdam Institute for Climate Impact Research
    VU University Amsterdam)

Abstract

Heat and rainfall extremes have intensified over the past few decades and this trend is projected to continue with future global warming1–3. A long persistence of extreme events often leads to societal impacts with warm-and-dry conditions severely affecting agriculture and consecutive days of heavy rainfall leading to flooding. Here we report systematic increases in the persistence of boreal summer weather in a multi-model analysis of a world 2 °C above pre-industrial compared to present-day climate. Averaged over the Northern Hemisphere mid-latitude land area, the probability of warm periods lasting longer than two weeks is projected to increase by 4% (2–6% full uncertainty range) after removing seasonal-mean warming. Compound dry–warm persistence increases at a similar magnitude on average but regionally up to 20% (11–42%) in eastern North America. The probability of at least seven consecutive days of strong precipitation increases by 26% (15–37%) for the mid-latitudes. We present evidence that weakening storm track activity contributes to the projected increase in warm and dry persistence. These changes in persistence are largely avoided when warming is limited to 1.5 °C. In conjunction with the projected intensification of heat and rainfall extremes, an increase in persistence can substantially worsen the effects of future weather extremes.

Suggested Citation

  • Peter Pfleiderer & Carl-Friedrich Schleussner & Kai Kornhuber & Dim Coumou, 2019. "Summer weather becomes more persistent in a 2 °C world," Nature Climate Change, Nature, vol. 9(9), pages 666-671, September.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0555-0
    DOI: 10.1038/s41558-019-0555-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0555-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0555-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    2. Claudia Simolo & Susanna Corti, 2022. "Quantifying the role of variability in future intensification of heat extremes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Kai Kornhuber & Corey Lesk & Carl F. Schleussner & Jonas Jägermeyr & Peter Pfleiderer & Radley M. Horton, 2023. "Risks of synchronized low yields are underestimated in climate and crop model projections," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0555-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.