IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v2y2012i2d10.1038_nclimate1330.html
   My bibliography  Save this article

Coral thermal tolerance shaped by local adaptation of photosymbionts

Author

Listed:
  • E. J. Howells

    (School of Marine and Tropical Biology, James Cook University
    Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University
    Australian Institute of Marine Science
    AIMS@JCU, Australian Institute of Marine Science, School of Marine and Tropical Biology, James Cook University)

  • V. H. Beltran

    (Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University
    Australian Institute of Marine Science)

  • N. W. Larsen

    (School of Marine and Tropical Biology, James Cook University)

  • L. K. Bay

    (Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University
    Australian Institute of Marine Science)

  • B. L. Willis

    (School of Marine and Tropical Biology, James Cook University
    Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University
    AIMS@JCU, Australian Institute of Marine Science, School of Marine and Tropical Biology, James Cook University)

  • M. J. H. van Oppen

    (Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University
    Australian Institute of Marine Science
    AIMS@JCU, Australian Institute of Marine Science, School of Marine and Tropical Biology, James Cook University)

Abstract

An analysis shows that the coral endosymbiont Symbiodinium—a dinoflagellate genus underpinning the ecological and evolutionary success of reef corals—can adapt to local thermal regimes, thereby shaping the fitness of coral hosts. This may explain why many corals show fidelity for single Symbiodinium types over wide thermal ranges.

Suggested Citation

  • E. J. Howells & V. H. Beltran & N. W. Larsen & L. K. Bay & B. L. Willis & M. J. H. van Oppen, 2012. "Coral thermal tolerance shaped by local adaptation of photosymbionts," Nature Climate Change, Nature, vol. 2(2), pages 116-120, February.
  • Handle: RePEc:nat:natcli:v:2:y:2012:i:2:d:10.1038_nclimate1330
    DOI: 10.1038/nclimate1330
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1330
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. M. Quigley & M. J. H. Oppen, 2022. "Predictive models for the selection of thermally tolerant corals based on offspring survival," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:2:y:2012:i:2:d:10.1038_nclimate1330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.