IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i3d10.1038_s41558-020-00970-y.html
   My bibliography  Save this article

Observational constraint on cloud feedbacks suggests moderate climate sensitivity

Author

Listed:
  • Grégory V. Cesana

    (Columbia University
    NASA Goddard Institute for Space Studies)

  • Anthony D. Del Genio

    (NASA Goddard Institute for Space Studies)

Abstract

Global climate models predict warming in response to increasing GHG concentrations, partly due to decreased tropical low-level cloud cover and reflectance. We use satellite observations that discriminate stratocumulus from shallow cumulus clouds to separately evaluate their sensitivity to warming and constrain the tropical contribution to low-cloud feedback. We find an observationally inferred low-level cloud feedback two times smaller than a previous estimate. Shallow cumulus clouds are insensitive to warming, whereas global climate models exhibit a large positive cloud feedback in shallow cumulus regions. In contrast, stratocumulus clouds show sensitivity to warming and the tropical inversion layer strength, controlled by the tropical Pacific sea surface temperature gradient. Models fail to reproduce the historical sea surface temperature gradient trends and therefore changes in inversion strength, generating an overestimate of the positive stratocumulus cloud feedback. Continued weak east Pacific warming would therefore produce a weaker low-cloud feedback and imply a more moderate climate sensitivity (3.47 ± 0.33 K) than many models predict.

Suggested Citation

  • Grégory V. Cesana & Anthony D. Del Genio, 2021. "Observational constraint on cloud feedbacks suggests moderate climate sensitivity," Nature Climate Change, Nature, vol. 11(3), pages 213-218, March.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00970-y
    DOI: 10.1038/s41558-020-00970-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-00970-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-00970-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianan Jiang & Hui Su & Jonathan H. Jiang & J. David Neelin & Longtao Wu & Yoko Tsushima & Gregory Elsaesser, 2023. "Muted extratropical low cloud seasonal cycle is closely linked to underestimated climate sensitivity in models," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kathleen A. Schiro & Hui Su & Fiaz Ahmed & Ni Dai & Clare E. Singer & Pierre Gentine & Gregory S. Elsaesser & Jonathan H. Jiang & Yong-Sang Choi & J. David Neelin, 2022. "Model spread in tropical low cloud feedback tied to overturning circulation response to warming," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00970-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.